848 research outputs found

    What is a Good Pattern of Life Model? Guidance for Simulations

    Get PDF
    We have been modeling an ever-increasing scale of applications with agents that simulate the pattern of life (PoL) and real-world human behaviors in diverse regions of the world. The goal is to support sociocultural training and analysis. To measure progress, we propose the definition of a measure of goodness for such simulated agents, and review the issues and challenges associated with first-generation (1G) agents. Then we present a second generation (2G) agent hybrid approach that seeks to improve realism in terms of emergent daily activities, social awareness, and micro-decision making in simulations. We offer a PoL case study with a mix of 1G and 2G approaches that was able to replace the pucksters and avatar operators needed in large-scale immersion exercises. We conclude by observing that a 1G PoL simulation might still be best where large-scale, pre-scripted training scenarios will suffice, while the 2G approach will be important for analysis or if it is vital to learn about adaptive opponents or unexpected or emergent effects of actions. Lessons are shared about ways to blend 1G and 2G approaches to get the best of each

    Vacancy complexes with oversized impurities in Si and Ge

    Get PDF
    In this paper we examine the electronic and geometrical structure of impurity-vacancy complexes in Si and Ge. Already Watkins suggested that in Si the pairing of Sn with the vacancy produces a complex with the Sn-atom at the bond center and the vacancy split into two half vacancies on the neighboring sites. Within the framework of density-functional theory we use two complementary ab initio methods, the pseudopotential plane wave (PPW) method and the all-electron Kohn-Korringa-Rostoker (KKR) method, to investigate the structure of vacancy complexes with 11 different sp-impurities. For the case of Sn in Si, we confirm the split configuration and obtain good agreement with EPR data of Watkins. In general we find that all impurities of the 5sp and 6sp series in Si and Ge prefer the split-vacancy configuration, with an energy gain of 0.5 to 1 eV compared to the substitutional complex. On the other hand, impurities of the 3sp and 4sp series form a (slightly distorted) substitutional complex. Al impurities show an exception from this rule, forming a split complex in Si and a strongly distorted substitutional complex in Ge. We find a strong correlation of these data with the size of the isolated impurities, being defined via the lattice relaxations of the nearest neighbors.Comment: 8 pages, 4 bw figure

    Acceleration of Diffusional Jumps of Interstitial Fe with Increasing Ge Concentration in Si1 − x Ge x Alloys Observed by Mössbauer Spectroscopy

    Get PDF
    Radioactive 57Mn isotopes have been implanted into Si1 − x Ge x crystals (x ≤ 0.1) at elevated temperatures for Mössbauer studies of the diffusion of interstitial 57Fe daughter atoms. The atomic jump frequency is found to increase upon Ge alloying. This is attributed to a lowering of the activation energy, i.e. the saddle point energy at hexagonal interstitial sites with Ge neighbour atom

    Gravitational Theory, Galaxy Rotation Curves and Cosmology without Dark Matter

    Full text link
    Einstein gravity coupled to a massive skew symmetric field F_{\mu\nu\lambda} leads to an acceleration law that modifies the Newtonian law of attraction between particles. We use a framework of non-perturbative renormalization group equations as well as observational input to characterize special renormalization group trajectories to allow for the running of the effective gravitational coupling G and the coupling of the skew field to matter. The latter lead to an increase of Newton's constant at large galactic and cosmological distances. For weak fields a fit to the flat rotation curves of galaxies is obtained in terms of the mass (mass-to-light ratio M/L) of galaxies. The fits assume that the galaxies are not dominated by exotic dark matter and that the effective gravitational constant G runs with distance scale. The equations of motion for test particles yield predictions for the solar system and the binary pulsar PSR 1913+16 that agree with the observations. The gravitational lensing of clusters of galaxies can be explained without exotic dark matter. An FLRW cosmological model with an effective G=G(t) running with time can lead to consistent fits to cosmological data without assuming the existence of exotic cold dark matter.Comment: 33 pages, 20 figures, 1 table. Latex file. Additional text and references. Corrections. To be published in Journal of Cosmology and Astroparticle Physics (JCAP

    Two-body Pion Absorption on 3He^3He at Threshold

    Full text link
    It is shown that a satisfactory explanation of the ratio of the rates of the reactions 3He(π−,nn)^3He(\pi^-,nn) and 3He(π−,np)^3He(\pi^-,np) for stopped pions is obtained once the effect of the short range two-nucleon components of the axial charge operator for the nuclear system is taken into account. By employing realistic models for the nucleon-nucleon interaction in the construction of these components of the axial charge operator, the predicted ratios agree with the empirical value to within 10-20\%.Comment: 19, UHPHYDOR-94-

    A new measurement of the properties of the rare decay K -> pi+ e+ e-

    Full text link
    A large low-background sample of events (10300) has been collected for the rare decay of kaons in flight K+ -> pi+ e+ e- by experiment E865 at the Brookhaven AGS. The decay products were accepted by a broad band high-resolution charged particle spectrometer with particle identification. The branching ratio (2.94 +- 0.05(stat.) +- 0.13(syst.) +- 0.05(model))*10**{-7} was determined normalizing to events from the decay chain K+ -> pi+ pi0; pi0 -> e+ e- gamma. From the analysis of the decay distributions the vector nature of this decay is firmly established now, and limits on scalar and tensor contributions are deduced. From the (e+ e-) invariant mass distribution the decay form factor f(z)=f0(1+ delta*z) (z=M(ee)**2/m(K)**2) is determined with delta=2.14 +- 0.13 +- 0.15. Chiral QCD perturbation theory predictions for the form factor are also tested, and terms beyond leading order O(p**4) are found to be important.Comment: 4 pages, 5 figure
    • …
    corecore