65,493 research outputs found
Local properties of patterned vegetation: quantifying endogenous and exogenous effects
Dryland ecosystems commonly exhibit periodic bands of vegetation, thought to
form due to competition between individual plants for heterogeneously
distributed water. In this paper, we develop a Fourier method for locally
identifying the pattern wavenumber and orientation, and apply it to aerial
images from a region of vegetation patterning near Fort Stockton, Texas. We
find that the local pattern wavelength and orientation are typically coherent,
but exhibit both rapid and gradual variation driven by changes in hillslope
gradient and orientation, the potential for water accumulation, or soil type.
Endogenous pattern dynamics, when simulated for spatially homogeneous
topographic and vegetation conditions, predict pattern properties that are much
less variable than the orientation and wavelength observed in natural systems.
Our local pattern analysis, combined with ancillary datasets describing soil
and topographic variation, highlights a largely unexplored correlation between
soil depth, pattern coherence, vegetation cover and pattern wavelength. It
also, surprisingly, suggests that downslope accumulation of water may play a
role in changing vegetation pattern properties
A dynamically adaptive multigrid algorithm for the incompressible Navier-Stokes equations: Validation and model problems
An algorithm is described for the solution of the laminar, incompressible Navier-Stokes equations. The basic algorithm is a multigrid based on a robust, box-based smoothing step. Its most important feature is the incorporation of automatic, dynamic mesh refinement. This algorithm supports generalized simple domains. The program is based on a standard staggered-grid formulation of the Navier-Stokes equations for robustness and efficiency. Special grid transfer operators were introduced at grid interfaces in the multigrid algorithm to ensure discrete mass conservation. Results are presented for three models: the driven-cavity, a backward-facing step, and a sudden expansion/contraction
Coz: Finding Code that Counts with Causal Profiling
Improving performance is a central concern for software developers. To locate
optimization opportunities, developers rely on software profilers. However,
these profilers only report where programs spent their time: optimizing that
code may have no impact on performance. Past profilers thus both waste
developer time and make it difficult for them to uncover significant
optimization opportunities.
This paper introduces causal profiling. Unlike past profiling approaches,
causal profiling indicates exactly where programmers should focus their
optimization efforts, and quantifies their potential impact. Causal profiling
works by running performance experiments during program execution. Each
experiment calculates the impact of any potential optimization by virtually
speeding up code: inserting pauses that slow down all other code running
concurrently. The key insight is that this slowdown has the same relative
effect as running that line faster, thus "virtually" speeding it up.
We present Coz, a causal profiler, which we evaluate on a range of
highly-tuned applications: Memcached, SQLite, and the PARSEC benchmark suite.
Coz identifies previously unknown optimization opportunities that are both
significant and targeted. Guided by Coz, we improve the performance of
Memcached by 9%, SQLite by 25%, and accelerate six PARSEC applications by as
much as 68%; in most cases, these optimizations involve modifying under 10
lines of code.Comment: Published at SOSP 2015 (Best Paper Award
Simultaneous Multiwavelength Observations of Magnetic Activity in Ultracool Dwarfs. IV. The Active, Young Binary NLTT 33370 AB (=2MASS J13142039+1320011)
We present multi-epoch simultaneous radio, optical, H{\alpha}, UV, and X-ray
observations of the active, young, low-mass binary NLTT 33370 AB (blended
spectral type M7e). This system is remarkable for its extreme levels of
magnetic activity: it is the most radio-luminous ultracool dwarf (UCD) known,
and here we show that it is also one of the most X-ray luminous UCDs known. We
detect the system in all bands and find a complex phenomenology of both flaring
and periodic variability. Analysis of the optical light curve reveals the
simultaneous presence of two periodicities, 3.7859 0.0001 and 3.7130
0.0002 hr. While these differ by only ~2%, studies of differential
rotation in the UCD regime suggest that it cannot be responsible for the two
signals. The system's radio emission consists of at least three components:
rapid 100% polarized flares, bright emission modulating periodically in phase
with the optical emission, and an additional periodic component that appears
only in the 2013 observational campaign. We interpret the last of these as a
gyrosynchrotron feature associated with large-scale magnetic fields and a cool,
equatorial plasma torus. However, the persistent rapid flares at all rotational
phases imply that small-scale magnetic loops are also present and reconnect
nearly continuously. We present an SED of the blended system spanning more than
9 orders of magnitude in wavelength. The significant magnetism present in NLTT
33370 AB will affect its fundamental parameters, with the components' radii and
temperatures potentially altered by ~+20% and ~-10%, respectively. Finally, we
suggest spatially resolved observations that could clarify many aspects of this
system's nature.Comment: emulateapj, 22 pages, 15 figures, ApJ in press; v2: fixes low-impact
error in Figure 15; v3: now in-pres
Recommended from our members
Deaf and hearing children's picture naming Impact of age of acquisition and language modality on representational gesture
Stefanini, Bello, Caselli, Iverson, & Volterra (2009) reported that Italian 24-36 month old children use a high proportion of representational gestures to accompany their spoken responses when labelling pictures. The two studies reported here used the same naming task with (1) typically developing 24-46-month-old hearing children acquiring English and (2) 24-63-month-old deaf children of deaf and hearing parents acquiring British Sign Language (BSL) and spoken English. In Study 1 children scored within the range of correct spoken responses previously reported, but produced very few representational gestures. However, when they did gesture, they expressed the same action meanings as reported in previous research. The action bias was also observed in deaf children of hearing parents in Study 2, who labelled pictures with signs, spoken words and gestures. The deaf group with deaf parents used BSL almost exclusively with few additional gestures. The function of representational gestures in spoken and signed vocabulary development is considered in relation to differences between native and non-native sign language acquisition
The New Element Californium (Atomic Number 98)
Definite identification has been made of an isotope of the element with atomic number 98 through the irradiation of Cm{sup 242} with about 35-Mev helium ions in the Berkeley Crocker Laboratory 60-inch cyclotron. The isotope which has been identified has an observed half-life of about 45 minutes and is thought to have the mass number 244. The observed mode of decay of 98{sup 244} is through the emission of alpha-particles, with energy of about 7.1 Mev, which agrees with predictions. Other considerations involving the systematics of radioactivity in this region indicate that it should also be unstable toward decay by electron capture. The chemical separation and identification of the new element was accomplished through the use of ion exchange adsorption methods employing the resin Dowex-50. The element 98 isotope appears in the eka-dysprosium position on elution curves containing berkelium and curium as reference points--that is, it precedes berkelium and curium off the column in like manner that dysprosium precedes terbium and gadolinium. The experiments so far have revealed only the tripositive oxidation state of eka-dysprosium character and suggest either that higher oxidation states are not stable in aqueous solutions or that the rates of oxidation are slow. The successful identification of so small an amount of an isotope of element 98 was possible only through having made accurate predictions of the chemical and radioactive properties
Treatment response in relation to inflammatory and axonal surrogate marker in multiple sclerosis
BACKGROUND: This study aimed to investigate if treatment response could retrospectively be related to inflammatory or axonal pathology as measured by plasma surrogate markers. METHODS: In this 1-year observational study 30 multiple sclerosis (MS) patients with relapsing-remitting disease were treated with intramuscular IFNbeta-1a or subcutaneous IFNbeta-1b. Responders and nonresponders were defined according to clinical and magnetic resonance imaging criteria. The control group consisted of 14 healthy subjects. Plasma levels of surrogate markers for inflammation (nitric oxide metabolites (NOx)), astrocytic activation (S100B) and axonal damage (NfH(SM135)) were measured using standard assays. RESULTS: There were 11 nonresponders and 19 responders to IFNbeta treatment. Median S100B levels were elevated in a higher proportion of treatment responders (63%, 42.9 pg/mL) compared to nonresponders (18%, 11.7 pg/mL, P < 0.05, Fisher's exact test) and controls (0%, 2 pg/mL, P < 0.001). Levels of NOx were found to be more frequently elevated in nonresponders (72%, 39 microM) compared to healthy controls (0%, 37 microM, P < 0.05). Levels of NfH(SM135) were more frequently elevated in responders (58%, 300 pg/mL, P < 0.001) and nonresponders (72%, 500 pg/mL, P < 0.001) compared to controls (0%, 4.5 pg/mL). CONCLUSION: Patients with relapsing-remitting MS who had surrogate marker supported evidence for astrocytic activation responded more frequently to treatment with IFNbeta
- …