1,927 research outputs found

    Book Review: Research Methods in Education, 7th Edition

    Get PDF
    This article reviews the book, “Research Methods in Education” by Louis Cohen, Lawrence Manion, Keith Morrison (Authors)

    Positioning systems in Minkowski space-time: from emission to inertial coordinates

    Full text link
    The coordinate transformation between emission coordinates and inertial coordinates in Minkowski space-time is obtained for arbitrary configurations of the emitters. It appears that a positioning system always generates two different coordinate domains, namely, the front and the back emission coordinate domains. For both domains, the corresponding covariant expression of the transformation is explicitly given in terms of the emitter world-lines. This task requires the notion of orientation of an emitter configuration. The orientation is shown to be computable from the emission coordinates for the users of a `central' region of the front emission coordinate domain. Other space-time regions associated with the emission coordinates are also outlined.Comment: 20 pages; 1 figur

    Assessment of Electromagnetic Tracking Accuracy for Endoscopic Ultrasound

    Get PDF
    Endoscopic ultrasound (EUS) is a minimally-invasive imaging technique that can be technically difficult to perform due to the small field of view and uncertainty in the endoscope position. Electromagnetic (EM) tracking is emerging as an important technology in guiding endoscopic interventions and for training in endotherapy by providing information on endoscope location by fusion with pre-operative images. However, the accuracy of EM tracking could be compromised by the endoscopic ultrasound transducer. In this work, we quantify the precision and accuracy of EM tracking sensors inserted into the working channel of a flexible endoscope, with the ultrasound transducer turned on and off. The EUS device was found to have little (no significant) effect on static tracking accuracy although jitter increased significantly. A significant change in the measured distance between sensors arranged in a fixed geometry was found during a dynamic acquisition. In conclusion, EM tracking accuracy was not found to be significantly affected by the flexible endoscope

    Determination of optimal ultrasound planes for the initialisation of image registration during endoscopic ultrasound-guided procedures

    Get PDF
    Purpose Navigation of endoscopic ultrasound (EUS)-guided procedures of the upper gastrointestinal (GI) system can be technically challenging due to the small fields-of-view of ultrasound and optical devices, as well as the anatomical variability and limited number of orienting landmarks during navigation. Co-registration of an EUS device and a pre-procedure 3D image can enhance the ability to navigate. However, the fidelity of this contextual information depends on the accuracy of registration. The purpose of this study was to develop and test the feasibility of a simulation-based planning method for pre-selecting patient-specific EUS-visible anatomical landmark locations to maximise the accuracy and robustness of a feature-based multimodality registration method. Methods A registration approach was adopted in which landmarks are registered to anatomical structures segmented from the pre-procedure volume. The predicted target registration errors (TREs) of EUS-CT registration were estimated using simulated visible anatomical landmarks and a Monte Carlo simulation of landmark localisation error. The optimal planes were selected based on the 90th percentile of TREs, which provide a robust and more accurate EUS-CT registration initialisation. The method was evaluated by comparing the accuracy and robustness of registrations initialised using optimised planes versus non-optimised planes using manually segmented CT images and simulated (n=9) or retrospective clinical (n=1) EUS landmarks. Results The results show a lower 90th percentile TRE when registration is initialised using the optimised planes compared with a non-optimised initialisation approach (p value <0.01). Conclusions The proposed simulation-based method to find optimised EUS planes and landmarks for EUS-guided procedures may have the potential to improve registration accuracy. Further work will investigate applying the technique in a clinical setting

    Flux profile scanners for scattered high-energy electrons

    Full text link
    The paper describes the design and performance of flux integrating Cherenkov scanners with air-core reflecting light guides used in a high-energy, high-flux electron scattering experiment at the Stanford Linear Accelerator Center. The scanners were highly radiation resistant and provided a good signal to background ratio leading to very good spatial resolution of the scattered electron flux profile scans.Comment: 22 pages, 17 figure

    Neutrino physics at accelerators

    Get PDF
    Present and future neutrino experiments at accelerators are mainly concerned with understanding the neutrino oscillation phenomenon and its implications. Here a brief account of neutrino oscillations is given together with a description of the supporting data. Some current and planned accelerator neutrino experiments are also explained.Comment: 23 pages, 24 figures. Talk given at the Corfu Summer Institute on Elementary Particle Physics 200

    Kerr-Schild Symmetries

    Get PDF
    We study continuous groups of generalized Kerr-Schild transformations and the vector fields that generate them in any n-dimensional manifold with a Lorentzian metric. We prove that all these vector fields can be intrinsically characterized and that they constitute a Lie algebra if the null deformation direction is fixed. The properties of these Lie algebras are briefly analyzed and we show that they are generically finite-dimensional but that they may have infinite dimension in some relevant situations. The most general vector fields of the above type are explicitly constructed for the following cases: any two-dimensional metric, the general spherically symmetric metric and deformation direction, and the flat metric with parallel or cylindrical deformation directions.Comment: 15 pages, no figures, LaTe

    Boolean analysis identifies CD38 as a biomarker of aggressive localized prostate cancer.

    Get PDF
    The introduction of serum Prostate Specific Antigen (PSA) testing nearly 30 years ago has been associated with a significant shift towards localized disease and decreased deaths due to prostate cancer. Recognition that PSA testing has caused over diagnosis and over treatment of prostate cancer has generated considerable controversy over its value, and has spurred efforts to identify prognostic biomarkers to distinguish patients who need treatment from those that can be observed. Recent studies show that cancer is heterogeneous and forms a hierarchy of tumor cell populations. We developed a method of identifying prostate cancer differentiation states related to androgen signaling using Boolean logic. Using gene expression data, we identified two markers, CD38 and ARG2, that group prostate cancer into three differentiation states. Cancers with CD38-, ARG2- expression patterns, corresponding to an undifferentiated state, had significantly lower 10-year recurrence-free survival compared to the most differentiated group (CD38+ARG2+). We carried out immunohistochemical (IHC) staining for these two markers in a single institution (Stanford; n = 234) and multi-institution (Canary; n = 1326) cohorts. IHC staining for CD38 and ARG2 in the Stanford cohort demonstrated that combined expression of CD38 and ARG2 was prognostic. In the Canary cohort, low CD38 protein expression by IHC was significantly associated with recurrence-free survival (RFS), seminal vesicle invasion (SVI), extra-capsular extension (ECE) in univariable analysis. In multivariable analysis, ARG2 and CD38 IHC staining results were not independently associated with RFS, overall survival, or disease-specific survival after adjusting for other factors including SVI, ECE, Gleason score, pre-operative PSA, and surgical margins

    Atomic step motion during the dewetting of ultra-thin films

    Full text link
    We report on three key processes involving atomic step motion during the dewetting of thin solid films: (i) the growth of an isolated island nucleated far from a hole, (ii) the spreading of a monolayer rim, and (iii) the zipping of a monolayer island along a straight dewetting front. Kinetic Monte Carlo results are in good agreement with simple analytical models assuming diffusion-limited dynamics.Comment: 7 pages, 5 figure
    • 

    corecore