3,057 research outputs found

    Level spacing distribution of pseudointegrable billiard

    Full text link
    In this paper, we examine the level spacing distribution P(S)P(S) of the rectangular billiard with a single point-like scatterer, which is known as pseudointegrable. It is shown that the observed P(S)P(S) is a new type, which is quite different from the previous conclusion. Even in the strong coupling limit, the Poisson-like behavior rather than Wigner-like is seen for S>1S>1, although the level repulsion still remains in the small SS region. The difference from the previous works is analyzed in detail.Comment: 11 pages, REVTeX file, 3 PostScript Figure

    Constructing quantum games from non-factorizable joint probabilities

    Get PDF
    A probabilistic framework is developed that gives a unifying perspective on both the classical and the quantum games. We suggest exploiting peculiar probabilities involved in Einstein-Podolsky-Rosen (EPR) experiments to construct quantum games. In our framework a game attains classical interpretation when joint probabilities are factorizable and a quantum game corresponds when these probabilities cannot be factorized. We analyze how non-factorizability changes Nash equilibria in two-player games while considering the games of Prisoner's Dilemma, Stag Hunt, and Chicken. In this framework we find that for the game of Prisoner's Dilemma even non-factorizable EPR joint probabilities cannot be helpful to escape from the classical outcome of the game. For a particular version of the Chicken game, however, we find that the two non-factorizable sets of joint probabilities, that maximally violates the Clauser-Holt-Shimony-Horne (CHSH) sum of correlations, indeed result in new Nash equilibria.Comment: Revised in light of referee's comments, submitted to Physical Review

    Quantum Matching Pennies Game

    Full text link
    A quantum version of the Matching Pennies (MP) game is proposed that is played using an Einstein-Podolsky-Rosen-Bohm (EPR-Bohm) setting. We construct the quantum game without using the state vectors, while considering only the quantum mechanical joint probabilities relevant to the EPR-Bohm setting. We embed the classical game within the quantum game such that the classical MP game results when the quantum mechanical joint probabilities become factorizable. We report new Nash equilibria in the quantum MP game that emerge when the quantum mechanical joint probabilities maximally violate the Clauser-Horne-Shimony-Holt form of Bell's inequality.Comment: Revised in light of referees' comments, submitted to Journal of the Physical Society of Japan, 14 pages, 1 figur

    A layering model for superconductivity in the borocarbides

    Full text link
    We propose a superlattice model to describe superconductivity in layered materials, such as the borocarbide families with the chemical formul\ae\ RT2RT_2B2_2C and RTRTBC, with RR being (essentially) a rare earth, and TT a transition metal. We assume a single band in which electrons feel a local attractive interaction (negative Hubbard-UU) on sites representing the TTB layers, while U=0 on sites representing the RRC layers; the multi-band structure is taken into account minimally through a band offset ϵ\epsilon. The one-dimensional model is studied numerically through the calculation of the charge gap, the Drude weight, and of the pairing correlation function. A comparison with the available information on the nature of the electronic ground state (metallic or superconducting) indicates that the model provides a systematic parametrization of the whole borocarbide family.Comment: 4 figure

    An Analysis of the Quantum Penny Flip Game using Geometric Algebra

    Full text link
    We analyze the quantum penny flip game using geometric algebra and so determine all possible unitary transformations which enable the player Q to implement a winning strategy. Geometric algebra provides a clear visual picture of the quantum game and its strategies, as well as providing a simple and direct derivation of the winning transformation, which we demonstrate can be parametrized by two angles. For comparison we derive the same general winning strategy by conventional means using density matrices.Comment: 8 Pages, 1 Figure, accepted for publication in the Journal of Physical Society of Japa

    Boron Isotope Effect in Superconducting MgB2_2

    Full text link
    We report the preparation method of, and boron isotope effect for MgB2_2, a new binary intermetallic superconductor with a remarkably high superconducting transition temperature TcT_c(10^{10}B) = 40.2 K. Measurements of both temperature dependent magnetization and specific heat reveal a 1.0 K shift in TcT_c between Mg11^{11}B2_2 and Mg10^{10}B2_2. Whereas such a high transition temperature might imply exotic coupling mechanisms, the boron isotope effect in MgB2_2 is consistent with the material being a phonon-mediated BCS superconductor.Comment: One figure and related discussion adde

    Progress on the Electromagnetic Calorimeter Trigger Simulation at the Belle II Experiment

    Full text link
    The Belle II experiment at KEK in Japan has started real data taking from April 2018 to probe a New Physics beyond the Standard Model by measuring CP violation precisely and rare weak decays of heavy quark and lepton. The experiment is performed at the high luminosity SuperKEKB e^+ e^- collider with 80 x 10^34 cm^-2 s^-1 as an ultimate instantaneous luminosity. In order to develop and test an appropriate trigger algorithm under much higher luminosity and beam background environment than previous KEKB collider, a detail simulation study of the Belle II calorimeter trigger system is very crucial to operate Belle II Trigger and DAQ system in stable. We report preliminary results on various trigger logics and their efficiencies using physics and beam background Monte Carlo events with a Belle II Geant4-based analysis framework called Basf2
    • …
    corecore