108,608 research outputs found
Measurement of time differences between luminous events Patent
Mechanism for measuring nanosecond time differences between luminous events using streak camer
Encoding of low-quality DNA profiles as genotype probability matrices for improved profile comparisons, relatedness evaluation and database searches
Many DNA profiles recovered from crime scene samples are of a quality that
does not allow them to be searched against, nor entered into, databases. We
propose a method for the comparison of profiles arising from two DNA samples,
one or both of which can have multiple donors and be affected by low DNA
template or degraded DNA. We compute likelihood ratios to evaluate the
hypothesis that the two samples have a common DNA donor, and hypotheses
specifying the relatedness of two donors. Our method uses a probability
distribution for the genotype of the donor of interest in each sample. This
distribution can be obtained from a statistical model, or we can exploit the
ability of trained human experts to assess genotype probabilities, thus
extracting much information that would be discarded by standard interpretation
rules. Our method is compatible with established methods in simple settings,
but is more widely applicable and can make better use of information than many
current methods for the analysis of mixed-source, low-template DNA profiles. It
can accommodate uncertainty arising from relatedness instead of or in addition
to uncertainty arising from noisy genotyping. We describe a computer program
GPMDNA, available under an open source license, to calculate LRs using the
method presented in this paper.Comment: 28 pages. Accepted for publication 2-Sep-2016 - Forensic Science
International: Genetic
SDSS J142625.71+575218.3: the First Pulsating White Dwarf With A Large Detectable Magnetic Field
We report the discovery of a strong magnetic field in the unique pulsating carbon- atmosphere white dwarf SDSS J142625.71 + 575218.3. From spectra gathered at the MMT and Keck telescopes, we infer a surface field of B(s) similar or equal to 1.2 MG, based on obvious Zeeman components seen in several carbon lines. We also detect the presence of a Zeeman- splitted He I lambda 4471 line, which is an indicator of the presence of a nonnegligible amount of helium in the atmosphere of this "hot DQ" star. This is important for understanding its pulsations, as nonadabatic theory reveals that some helium must be present in the envelope mixture for pulsation modes to be excited in the range of effective temperature where the target star is found. Out of nearly 200 pulsating white dwarfs known today, this is the first example of a star with a large detectable magnetic field. We suggest that SDSS J142625.71 + 575218.3 is the white dwarf equivalent of a rapidly oscillating Ap star.NSERCNSF AST 03-07321Reardon FoundationAstronom
Rotor redesign for a highly loaded 1800 ft/sec tip speed fan. 3: Laser Doppler velocimeter report
Laser Doppler velocimeter (LDV) techniques were employed for testing a highly loaded, 550 m/sec (1800 ft/sec) tip speed, test fan stage, the objective to provide detailed mapping of the upstream, intrablade, and downstream flowfields of the rotor. Intrablade LDV measurements of velocity and flow angle were obtained along four streamlines passing through the leading edge at 45%, 69%, 85%, and 95% span measured from hub to tip, at 100% of design speed, peak efficiency; 100% speed, near surge; and 95% speed, peak efficiency. At the design point, most passages appeared to have a strong leading edge shock, which moved forward with increasing strength near surge and at part speeds. The flow behind the shock was of a complex mixed subsonic and supersonic form. The intrablade flowfields were found to be significantly nonperiodic at 100% design speed, peak efficiency
The open cluster initial-final mass relationship and the high-mass tail of the white dwarf distribution
Recent studies of white dwarfs in open clusters have provided new constraints
on the initial - final mass relationship (IFMR) for main sequence stars with
masses in the range 2.5 - 6.5 Mo. We re-evaluate the ensemble of data that
determines the IFMR and argue that the IFMR can be characterised by a mean
initial-final mass relationship about which there is an intrinsic scatter. We
investigate the consequences of the IFMR for the observed mass distribution of
field white dwarfs using population synthesis calculations. We show that while
a linear IFMR predicts a mass distribution that is in reasonable agreement with
the recent results from the PG survey, the data are better fitted by an IFMR
with some curvature. Our calculations indicate that a significant (~28%)
percentage of white dwarfs originating from single star evolution have masses
in excess of ~0.8 Mo, obviating the necessity for postulating the existence of
a dominant population of high-mass white dwarfs that arise from binary star
mergers.Comment: 5 pages, 2 color Postscript figures. Accepted for publication in
MNRA
Recommended from our members
Genetic Discrimination: Overview of the Issue and Proposed Legislation
[Excerpt] A key policy issue before Congress is whether the potential for genetic discrimination by employers and insurers merits protections for genetic information that are more extensive than those already in place for health information. For the stated purpose of prohibiting discrimination on the basis of genetic information with respect to health insurance and employment, the Genetic Information Nondiscrimination Act of 2007 (H.R. 493) was introduced in the House on January 16, 2007. On January 22, 2007, the act was introduced in the Senate (S. 358). The act is identical to the Genetic Information Nondiscrimination Act of 2005, which passed the Senate by a vote of 98-0 (S. 306, 109th). An identical House bill (H.R. 1227, 109th), never came to a vote. S. 306 was very similar to S. 1053 (108th), which the Senate passed in 2003 by a vote of 95-0. A distinct House bill, H.R. 1910 (108th), never came to a vote. This report focuses on the key points in the ongoing debate about genetic discrimination legislation
In-medium electron-nucleon scattering
In-medium nucleon electromagnetic form factors are calculated in the quark
meson coupling model. The form factors are typically found to be suppressed as
the density increases. For example, at normal nuclear density and , the nucleon electric form factors are reduced by approximately 8%
while the magnetic form factors are reduced by only 1 - 2%. These variations
are consistent with current experimental limits but should be tested by more
precise experiments in the near future.Comment: 14 pages, latex, 3 figure
Simultaneous Multiwavelength Observations of Magnetic Activity in Ultracool Dwarfs. IV. The Active, Young Binary NLTT 33370 AB (=2MASS J13142039+1320011)
We present multi-epoch simultaneous radio, optical, H{\alpha}, UV, and X-ray
observations of the active, young, low-mass binary NLTT 33370 AB (blended
spectral type M7e). This system is remarkable for its extreme levels of
magnetic activity: it is the most radio-luminous ultracool dwarf (UCD) known,
and here we show that it is also one of the most X-ray luminous UCDs known. We
detect the system in all bands and find a complex phenomenology of both flaring
and periodic variability. Analysis of the optical light curve reveals the
simultaneous presence of two periodicities, 3.7859 0.0001 and 3.7130
0.0002 hr. While these differ by only ~2%, studies of differential
rotation in the UCD regime suggest that it cannot be responsible for the two
signals. The system's radio emission consists of at least three components:
rapid 100% polarized flares, bright emission modulating periodically in phase
with the optical emission, and an additional periodic component that appears
only in the 2013 observational campaign. We interpret the last of these as a
gyrosynchrotron feature associated with large-scale magnetic fields and a cool,
equatorial plasma torus. However, the persistent rapid flares at all rotational
phases imply that small-scale magnetic loops are also present and reconnect
nearly continuously. We present an SED of the blended system spanning more than
9 orders of magnitude in wavelength. The significant magnetism present in NLTT
33370 AB will affect its fundamental parameters, with the components' radii and
temperatures potentially altered by ~+20% and ~-10%, respectively. Finally, we
suggest spatially resolved observations that could clarify many aspects of this
system's nature.Comment: emulateapj, 22 pages, 15 figures, ApJ in press; v2: fixes low-impact
error in Figure 15; v3: now in-pres
- …