28 research outputs found
Clinical isolates of Anantapuramu for the protein E isolation of the dengue virus
In theclinical samples from the state of Anantapuramu, the dengue virus serotype 2 protein E gene was found. It was established that the protein E gene was present in the models by using RT-PCR and cellular isolates. There has been one new sub strain discovered that are akin to the hermits described in previous investigations. An investigation of the epidemiology of the isolated strain was conducted using a phylogenetic analysis of the strain
The influence of thermal cycles on the microstructure of grade 92 steel
The microstructure in the heat-affected zone (HAZ) of welds made from the 9 wt pct chromium martensitic Grade 92 steel is complex and has not yet been completely understood. There is a lack of systematic microstructural investigations to define the different regions of the microstructure across the HAZ of Grade 92 steel welds as a function of the welding process. In this study, the microstructure in the HAZ of an as-fabricated single-pass bead-on-plate weld on a parent metal of Grade 92 steel was systematically investigated by using an extensive range
of electron and ion-microscopy-based techniques. A dilatometer was used to apply controlled thermal cycles to simulate the microstructures in the different regions of the HAZ. A wide range of microstructural properties in the simulated materials were then characterized and compared with the experimental observations from the weld HAZ. It was found that the microstructure in the HAZ of a single-pass Grade 92 steel weld can be categorized as a function of a decreasing
peak temperature reached as (1) the completely transformed (CT) region, in which the original matrix is completely reaustenitized with complete dissolution of the pre-existing secondary precipitate particles; (2) the partially transformed (PT) region, where the original matrix is partially reaustenitized along with a partial dissolution of the secondary precipitate particles from the original matrix; and (3) the overtempered (OT) region, where the pre-xisting precipitate particles coarsen. The PT region is considered to be the susceptible area for damage in the commonly reported HAZ failures in weldments constructed from these types of steels
Hot tensile properties of simulated heat-affected zone microstructures of 9Cr-1Mo weldment
The heat-affected zones (HAZ) of 9Cr---1Mo steel weldments consist of coarse-grain martensite with δ-ferrite, coarse-grain martensite, fine-grain martensite and intercritical structure. These HAZ microstructures have been simulated with respect to microstructure, hardness and grain size by isothermal heat treatment cycles in the temperature range 973-1573 K. Tensile tests at a strain rate of 3 × 10-4s-1 over the range 298-873 K showed that 0.2% YS and UTS values for the various microstructural conditions were in the descending order of coarse-grain martensite, coarse-grain martensite with δ-ferrite, fine-grain martensite, base metal and intercritical structure. The presence of δ-ferrite in the coarse-grain region of HAZ restricted the grain growth, the increase in strength and the decrease in ductility. This minimises the problem of cracking in the coarse-grain region of HAZ in this steel which is often encountered in low-alloy Cr---Mo ferritic steels. The regions with intercritical structure showed the lowest strength and fracture energy. Fine-grain martensite exhibited a good combination of strength and ductility in the HAZ
Characterization of microstructures across the heat-affected zone of the modified 9Cr-1Mo weld joint to understand its role in promoting type IV cracking
In the postweld heat-treated (PWHT) fusion welded modified 9Cr-1Mo steel joint, a soft zone was identified at the outer edge of the heat-affected zone (HAZ) of the base metal adjacent to the deposited weld metal. Hardness and tensile tests were performed on the base metal subjected to soaking for 5 minutes at temperatures below Ac1 to above Ac3 and tempering at the PWHT condition. These tests indicated that the soft zone in the weld joint corresponds to the intercritical region of HAZ. Creep tests were conducted on the base metal and cross weld joint. At relatively lower stresses and higher test temperatures, the weld joint possessed lower creep rupture life than the base metal, and the difference in creep rupture life increased with the decrease in stress and increase in temperature. Preferential accumulation of creep deformation coupled with extensive creep cavitation in the intercritical region of HAZ led to the premature failure of the weld joint in the intercritical region of the HAZ, commonly known as type IV cracking. The microstructures across the HAZ of the weld joint have been characterized to understand the role of microstructure in promoting type IV cracking. Strength reduction in the intercritical HAZ of the joint resulted from the combined effects of coarsening of dislocation substructures and precipitates. Constrained deformation of the soft intercritical HAZ sandwich between relatively stronger constitutes of the joint induced creep cavitation in the soft zone resulting in premature failure
Tensile flow behaviour of 2.25Cr-1Mo ferritic steel base metal and simulated heat affected zone structures of 2.25Cr-1Mo weld joint
Tensile tests in the temperature range 298 to 873 K have been performed on 2.25Cr-1Mo base metal and simulated heat affected zone (HAZ) structures of its weld joint, namely coarse grain bainite, fine grain bainite and intercritical structure. Tensile flow behaviour of all the microstructural conditions could be adequately described by the Hollomon equation (sigma = K-1 epsilon(n1)) at higher (> 623 K) temperatures. Deviation from the Hollomon equation was observed at low strains and lower (< 623 K) temperatures. The Ludwigson modification of Hollomon's equation, sigma = K-1 epsilon(n1) + exp (K-2 + n(2) epsilon), was found to describe the flow curve. In general, the flow parameters n(1), K-1, n(2) and K-2 were found to decrease with increase in temperature except in the intermediate temperature range (423 to 623 K). Peaks/plateaus were observed in their variation with temperature in the intermediate temperature range coinciding with the occurrence of serrated flow in the load-elongation curve. The n(1) Value increased and the K-1 value decreased with the type of microstructure in the order: coarse grain bainite, fine grain bainite, base metal and intercritical structure. The variation of nl with microstructure has been rationalized on the basis of mean free path (MFP) of dislocations which is directly related to the inter-particle spacing. Larger MFP of dislocations lead to higher strain hardening exponents n(1)
Correlation of skin changes with hormonal changes in polycystic ovarian syndrome: A cross-sectional study clinical study
Background: Polycystic ovarian syndrome (PCOS) is a heterogenous collection of signs and symptoms that when gathered, form a spectrum of disorder with disturbance of reproductive, endocrine and metabolic functions. Aim: The aim of this study is to correlate the skin manifestations with hormonal changes and to know the incidence and prevalence of skin manifestations in patients with PCOS. Materials and Methods: A total of 40 patients with PCOS were examined during 1 year time period from May 2008 P to May 2009. Detailed clinical history was taken from each patient. PCOS was diagnosed on the basis of ultrasonography. Hormonal assays included fasting blood sugar, postprandial blood sugar, follicle-stimulating hormone, luteinizing hormone, thyroid stimulating hormone, dehydroepiandrostenedione, prolactin, free testosterone, fasting lipid profile and sex hormone binding globulin. The results obtained were statistically correlated. Results: In our study, the prevalence of cutaneous manifestations was 90%. Of all the cutaneous manifestations acne was seen in highest percentage (67.5%), followed by hirsutism (62.5%), seborrhea (52.5%), androgenetic alopecia (AGA) (30%), acanthosis nigricans (22.5%) and acrochordons (10%). Fasting insulin levels was the most common hormonal abnormality seen in both acne and hirsutism, whereas AGA was associated with high testosterone levels. Conclusion: The prevalence of cutaneous manifestations in PCOS was 90%. Hirsutism, acne, seborrhea, acanthosis nigricans and acrochordons were associated with increased levels of fasting insulin, whereas AGA showed higher levels of serum testosterone
An assessment of creep deformation and fracture behavior of 2.25Cr-1Mo
The evaluation of the creep deformation and fracture behavior of a 2.25Cr-1Mo steel base metal, a 2.25Cr-1Mo/2.25Cr-1Mo similar weld joint, and a 2.25Cr-1Mo/Alloy 800 dissimilar weld joint at 823 K over a stress range of 90 to WO MPa has been carried out. The specimens for creep testing were taken from single-V weld pads fabricated by a shielded metal arc-welding process using 2.25Cr-1Mo steel (for similar-joint) and INCONEL 182 (for dissimilar-joint) electrodes. The weld pads were subsequently given a postweld hear treatment (PWHT) of 973 K for I hour. The microstructure and microhardness of the weld joints were evaluated in the as-welded, postweld heat-treated, and creep-tested conditions. The heat-affected zone (HAZ) of similar weld joint consisted of bainite in the coarse-prior-austenitic-grain (CPAG) region near the fusion line, followed by bainite in the fine-prior-austenitic-grain (FPAG) and intercritical regions merging with the unaffected base metal. In addition to the HAZ structures in the 2.25Cr-1Mo steel, the dissimilar weld joint displayed a definite INCONEL/2.25Cr-1Mo weld interface structure present either as a sharp line or as a diffuse region. A hardness trough was observed in the intercritical region of the HAZ in both weld joints, while a maxima in hardness was seen at the weld interface of the dissimilar weld joint. Both weld joints exhibited significantly lower rupture lives compared to the 2.25Cr-1Mo base metal. The dissimilar weld joint exhibited poor rupture life compared to the similar weld joint, at applied stresses lower than 130 MPa. In both weld joints, the strain distribution across the specimen gage length during creep testing varied significantly. During creep testing, localization of deformation occurred in the intercritical HAZ. In the similar weld joint, at all stress levels investigated, and in the dissimilar weld joint, at stresses greater than or equal to 150 MPa, the creep failure occulted in the intercritical HAZ. The fracture occurred by transgranular mode with a large number of dimples. At stresses below 150 MPa, the failure in the dissimilar weld joint occurred in the CPAG HAZ near to the weld interface. The failure occurred by extensive intergranular creep cavity formation
An assessment of creep deformation and fracture behavior of 2.25Cr-1Mo similar and dissimilar weld joints
The evaluation of the creep deformation and fracture behavior of a 2.25Cr-1Mo steel base metal, a 2.25Cr-1Mo/2.25Cr-1Mo similar weld joint, and a 2.25Cr-1Mo/Alloy 800 dissimilar weld joint at 823 K over a stress range of 90 to 250 MPa has been carried out. The specimens for creep testing were taken from single-V weld pads fabricated by a shielded metal arc-welding process using 2.25Cr-1Mo steel (for similar-joint) and INCONEL 182 (for dissimilar-joint) electrodes. The weld pads were subsequently given a postweld heat treatment (PWHT) of 973 K for 1 hour. The microstructure and microhardness of the weld joints were evaluated in the as-welded, postweld heat-treated, and creep-tested conditions. The heat-affected zone (HAZ) of similar weld joint consisted of bainite in the coarse-prior-austenitic-grain (CPAG) region near the fusion line, followed by bainite in the fine-prior-austenitic-grain (FPAG) and intercritical regions merging with the unaffected base metal. In addition to the HAZ structures in the 2.25Cr-1Mo steel, the dissimilar weld joint displayed a definite INCONEL/2.25Cr-1Mo weld interface structure present either as a sharp line or as a diffuse region. A hardness trough was observed in the intercritical region of the HAZ in both weld joints, while a maxima in hardness was seen at the weld interface of the dissimilar weld joint. Both weld joints exhibited significantly lower rupture lives compared to the 2.25Cr-1Mo base metal. The dissimilar weld joint exhibited poor rupture life compared to the similar weld joint, at applied stresses lower than 130 MPa. In both weld joints, the strain distribution across the specimen gage length during creep testing varied significantly. During creep testing, localization of deformation occurred in the intercritical HAZ. In the similar weld joint, at all stress levels investigated, and in the dissimilar weld joint, at stresses ≥150 MPa, the creep failure occurred in the intercritical HAZ. The fracture occurred by transgranular mode with a large number of dimples. At stresses below 150 MPa, the failure in the dissimilar weld joint occurred in the CPAG HAZ near to the weld interface. The failure occurred by extensive intergranular creep cavity formation
Juvenile xanthogranuloma with multiple lesions in central nervous system: A rare case report
Juvenile xanthogranuloma (JXG) preferentially occurs in childhood and is usually benign and limited to the skin. The systemic form is rare and may be associated with severe morbidity and mortality. We describe a three and a half year old boy with disseminated papular skin lesions and neurological signs and symptoms. Diagnostic workup revealed multiple brain lesions. Skin and brain biopsy was suggestive of systemic JXG. Treatment with prednisolone, vinblastine, and methotrexate caused regression of skin and central nervous system (CNS) lesions. However, 6 months after completion of chemotherapy, cutaneous but not CNS lesions relapsed. Few case reports have been published in the past, particularly with multiple lesions in CNS, which as in our case, is an extremely rare finding
Ball-indentation test technique for evaluating thermal and creep damage of modified 9Cr-1Mo steel
The Ball-Indentation (BI) testing based on multiple cycles of loading-unloading using a spherical indenter is a useful technique for evaluating tensile properties from a very small volume of material. In this study, the BI technique has been used in a novel way to evaluate the changes in mechanical properties of Modified (Mod) 9Cr-1Mo caused by creep exposures. Microstructural degradation of varying degrees in Mod 9Cr-1Mo steel is simulated by conventional creep test terminated at various strains. By carrying out BI tests on unstressed head and stressed gage portions of the creep specimens, the changes in the strength and ductility are evaluated. Microstructural evolution in the creep exposed conditions studied using transmission electron microscopy is related to the strength changes caused by the stressed exposures