38 research outputs found

    The Nucleotide Exchange Factor Ric-8A is a Chaperone for the Conformationally Dynamic Nucleotide-Free State of G Alpha I1

    Get PDF
    Heterotrimeric G protein alpha subunits are activated upon exchange of GDP for GTP at the nucleotide binding site of G alpha, catalyzed by guanine nucleotide exchange factors (GEFs). In addition to transmembrane G protein-coupled receptors (GPCRs), which act on G protein heterotrimers, members of the family cytosolic proteins typified by mammalian Ric-8A are GEFs for Gi/q/12/13-class G alpha subunits. Ric-8A binds to G alpha.GDP, resulting in the release of GDP. The Ric-8A complex with nucleotide-free G alpha i1 is stable, but dissociates upon binding of GTP to G alpha i1. To gain insight into the mechanism of Ric-8A-catalyzed GDP release from G alpha i1, experiments were conducted to characterize the physical state of nucleotide-free G alpha i1 (hereafter referred to as G alpha i1[]) in solution, both as a monomeric species, and in the complex with Ric-8A. We found that Ric-8A-bound, nucleotide-free G alpha i1 is more accessible to trypsinolysis than G alpha i1.GDP, but less so than G alpha i1[] alone. The TROSY-HSQC spectrum of [N-15]G alpha i1[] bound to Ric-8A shows considerable loss of peak intensity relative to that of [N-15]G alpha i1.GDP. Hydrogen-deuterium exchange in G alpha i1[] bound to Ric-8A is 1.5-fold more extensive than in G alpha i1.GDP. Differential scanning calorimetry shows that both Ric-8A and G alpha i1.GDP undergo cooperative, irreversible unfolding transitions at 47 degrees and 52 degrees, respectively, while nucleotide-free G alpha i1 shows a broad, weak transition near 35 degrees. The unfolding transition for Ric-8A: G alpha i1[] is complex, with a broad transition that peaks at 50 degrees, suggesting that both Ric-8A and G alpha i1[] are stabilized within the complex, relative to their respective free states. The C-terminus of G alpha i1 is shown to be a critical binding element for Ric-8A, as is also the case for GPCRs, suggesting that the two types of GEF might promote nucleotide exchange by similar mechanisms, by acting as chaperones for the unstable and dynamic nucleotide-free state of G alpha

    Requirement of RIZ1 for cancer prevention by methyl-balanced diet

    Get PDF
    The typical Western diet is not balanced in methyl nutrients that regulate the level of the methyl donor S-adenosylmethionine (SAM) and its derivative metabolite S-adenosylhomocysteine (SAH), which in turn may control the activity of certain methyltransferases. Feeding rodents with amino acid defined and methyl-imbalanced diet decreases hepatic SAM and causes liver cancers. RIZ1 (PRDM2 or KMT8) is a tumor suppressor and functions in transcriptional repression by methylating histone H3 lysine 9. Here we show that a methyl-balanced diet conferred additional survival benefits compared to a tumor-inducing methyl-imbalanced diet only in mice with wild type RIZ1 but not in mice deficient in RIZ1. While absence of RIZ1 was tumorigenic in mice fed the balanced diet, its presence did not prevent tumor formation in mice fed the imbalanced diet. Unlike most of its related enzymes, RIZ1 was upregulated by methyl-balanced diet. Methyl-balanced diet did not fully repress oncogenes such as c-Jun in the absence of RIZ1. The data identify RIZ1 as a critical target of methyl-balanced diet in cancer prevention. The molecular understanding of dietary carcinogenesis may help people make informed choices on diet, which may greatly reduce the incidence of cancer

    Hsp70 chaperones: Cellular functions and molecular mechanism

    Get PDF
    Hsp70 proteins are central components of the cellular network of molecular chaperones and folding catalysts. They assist a large variety of protein folding processes in the cell by transient association of their substrate binding domain with short hydrophobic peptide segments within their substrate proteins. The substrate binding and release cycle is driven by the switching of Hsp70 between the low-affinity ATP bound state and the high-affinity ADP bound state. Thus, ATP binding and hydrolysis are essential in vitro and in vivo for the chaperone activity of Hsp70 proteins. This ATPase cycle is controlled by co-chaperones of the family of J-domain proteins, which target Hsp70s to their substrates, and by nucleotide exchange factors, which determine the lifetime of the Hsp70-substrate complex. Additional co-chaperones fine-tune this chaperone cycle. For specific tasks the Hsp70 cycle is coupled to the action of other chaperones, such as Hsp90 and Hsp100

    A Novel Fibronectin Binding Motif in MSCRAMMs Targets F3 Modules

    Get PDF
    BBK32 is a surface expressed lipoprotein and fibronectin (Fn)-binding microbial surface component recognizing adhesive matrix molecule (MSCRAMM) of Borrelia burgdorferi, the causative agent of Lyme disease. Previous studies from our group showed that BBK32 is a virulence factor in experimental Lyme disease and located the Fn-binding region to residues 21-205 of the lipoprotein.Studies aimed at identifying interacting sites between BBK32 and Fn revealed an interaction between the MSCRAMM and the Fn F3 modules. Further analysis of this interaction showed that BBK32 can cause the aggregation of human plasma Fn in a similar concentration-dependent manner to that of anastellin, the superfibronectin (sFn) inducing agent. The resulting Fn aggregates are conformationally distinct from plasma Fn as indicated by a change in available thermolysin cleavage sites. Recombinant BBK32 and anastellin affect the structure of Fn matrices formed by cultured fibroblasts and inhibit endothelial cell proliferation similarly. Within BBK32, we have located the sFn-forming activity to a region between residues 160 and 175 which contains two sequence motifs that are also found in anastellin. Synthetic peptides mimicking these motifs induce Fn aggregation, whereas a peptide with a scrambled sequence motif was inactive, suggesting that these motifs represent the sFn-inducing sequence.We conclude that BBK32 induces the formation of Fn aggregates that are indistinguishable from those formed by anastellin. The results of this study provide evidence for how bacteria can target host proteins to manipulate host cell activities

    Fibronectin Unfolding Revisited: Modeling Cell Traction-Mediated Unfolding of the Tenth Type-III Repeat

    Get PDF
    Fibronectin polymerization is essential for the development and repair of the extracellular matrix. Consequently, deciphering the mechanism of fibronectin fibril formation is of immense interest. Fibronectin fibrillogenesis is driven by cell-traction forces that mechanically unfold particular modules within fibronectin. Previously, mechanical unfolding of fibronectin has been modeled by applying tensile forces at the N- and C-termini of fibronectin domains; however, physiological loading is likely focused on the solvent-exposed RGD loop in the 10th type-III repeat of fibronectin (10FNIII), which mediates binding to cell-surface integrin receptors. In this work we used steered molecular dynamics to study the mechanical unfolding of 10FNIII under tensile force applied at this RGD site. We demonstrate that mechanically unfolding 10FNIII by pulling at the RGD site requires less work than unfolding by pulling at the N- and C- termini. Moreover, pulling at the N- and C-termini leads to 10FNIII unfolding along several pathways while pulling on the RGD site leads to a single exclusive unfolding pathway that includes a partially unfolded intermediate with exposed hydrophobic N-terminal Ξ²-strands – residues that may facilitate fibronectin self-association. Additional mechanical unfolding triggers an essential arginine residue, which is required for high affinity binding to integrins, to move to a position far from the integrin binding site. This cell traction-induced conformational change may promote cell detachment after important partially unfolded kinetic intermediates are formed. These data suggest a novel mechanism that explains how cell-mediated forces promote fibronectin fibrillogenesis and how cell surface integrins detach from newly forming fibrils. This process enables cells to bind and unfold additional fibronectin modules – a method that propagates matrix assembly
    corecore