110 research outputs found
Spatial resolution of a GEM readout TPC using the charge dispersion signal
A large volume Time Projection Chamber (TPC) is being considered for the
central charged particle tracker for the detector for the proposed
International Linear Collider (ILC). To meet the ILC-TPC spatial resolution
challenge of ~100 microns with a manageable number of readout pads and channels
of electronics, Micro Pattern Gas Detectors (MPGD) are being developed which
could use pads comparable in width to the proportional-wire/cathode-pad TPC. We
have built a prototype GEM readout TPC with 2 mm x 6 mm pads using the new
concept of charge dispersion in MPGDs with a resistive anode. The dependence of
transverse resolution on the drift distance has been measured for small angle
tracks in cosmic ray tests without a magnetic field for Ar/CO2 (90:10). The
GEM-TPC resolution with charge dispersion readout is significantly better than
previous measurements carried out with conventional direct charge readout
techniques.Comment: 5 figures, 10 page
Micromegas TPC studies at high magnetic fields using the charge dispersion signal
The International Linear Collider (ILC) Time Projection Chamber (TPC)
transverse space-point resolution goal is 100 microns for all tracks including
stiff 90 degree tracks with the full 2 meter drift. A Micro Pattern Gas
Detector (MPGD) readout TPC can achieve the target resolution with existing
techniques using 1 mm or narrower pads at the expense of increased detector
cost and complexity. The new MPGD readout technique of charge dispersion can
achieve good resolution without resorting to narrow pads. This has been
demonstrated previously for 2 mm x 6 mm pads with GEMs and Micromegas in cosmic
ray tests and in a KEK beam test in a 1 Tesla magnet. We have recently tested a
Micromegas-TPC using the charge dispersion readout concept in a high field
super-conducting magnet at DESY. The measured Micromegas gain was found to be
constant within 0.5% for magnetic fields up to 5 Tesla. With the strong
suppression of transverse diffusion at high magnetic fields, we measure a flat
50 micron resolution at 5 Tesla over the full 15 cm drift length of our
prototype TPC.Comment: 7 pages, 3 figure
Spatial Resolution of a Micromegas-TPC Using the Charge Dispersion Signal
The Time Projection Chamber (TPC) for the International Linear Collider will
need to measure about 200 track points with a resolution close to 100 m. A
Micro Pattern Gas Detector (MPGD) readout TPC could achieve the desired
resolution with existing techniques using sub-millimeter width pads at the
expense of a large increase in the detector cost and complexity. We have
recently applied a new MPGD readout concept of charge dispersion to a prototype
GEM-TPC and demonstrated the feasibility of achieving good resolution with pads
similar in width to the ones used for the proportional wire TPC. The charge
dispersion studies were repeated with a Micromegas TPC amplification stage. We
present here our first results on the Micromegas-TPC resolution with charge
dispersion. The TPC resolution with the Micromegas readout is compared to our
earlier GEM results and to the resolution expected from electron statistics and
transverse diffusion in a gaseous TPC.Comment: 5 pages, 8 figures, to appar in the Proceedings of the 2005
International Linear Collider Workshop (LCWS05), Stanford, 18-22 March 200
The calibration of the Sudbury Neutrino Observatory using uniformly distributed radioactive sources
The production and analysis of distributed sources of 24Na and 222Rn in the
Sudbury Neutrino Observatory (SNO) are described. These unique sources provided
accurate calibrations of the response to neutrons, produced through
photodisintegration of the deuterons in the heavy water target, and to low
energy betas and gammas. The application of these sources in determining the
neutron detection efficiency and response of the 3He proportional counter
array, and the characteristics of background Cherenkov light from trace amounts
of natural radioactivity is described.Comment: 24 pages, 13 figure
Radon backgrounds in the DEAP-1 liquid-argon-based Dark Matter detector
The DEAP-1 \SI{7}{kg} single phase liquid argon scintillation detector was
operated underground at SNOLAB in order to test the techniques and measure the
backgrounds inherent to single phase detection, in support of the
\mbox{DEAP-3600} Dark Matter detector. Backgrounds in DEAP are controlled
through material selection, construction techniques, pulse shape discrimination
and event reconstruction. This report details the analysis of background events
observed in three iterations of the DEAP-1 detector, and the measures taken to
reduce them.
The Rn decay rate in the liquid argon was measured to be between 16
and \SI{26}{\micro\becquerel\per\kilogram}. We found that the background
spectrum near the region of interest for Dark Matter detection in the DEAP-1
detector can be described considering events from three sources: radon
daughters decaying on the surface of the active volume, the expected rate of
electromagnetic events misidentified as nuclear recoils due to inefficiencies
in the pulse shape discrimination, and leakage of events from outside the
fiducial volume due to imperfect position reconstruction. These backgrounds
statistically account for all observed events, and they will be strongly
reduced in the DEAP-3600 detector due to its higher light yield and simpler
geometry
Transcatheter valve implantation for right atrium‐to‐right ventricle conduit obstruction or regurgitation after modified Björk–fontan procedure
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136276/1/ccd26648_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136276/2/ccd26648.pd
Measurement of the scintillation time spectra and pulse-shape discrimination of low-energy beta and nuclear recoils in liquid argon with DEAP-1
The DEAP-1 low-background liquid argon detector was used to measure
scintillation pulse shapes of electron and nuclear recoil events and to
demonstrate the feasibility of pulse-shape discrimination (PSD) down to an
electron-equivalent energy of 20 keV.
In the surface dataset using a triple-coincidence tag we found the fraction
of beta events that are misidentified as nuclear recoils to be (90% C.L.) for energies between 43-86 keVee and for a nuclear recoil
acceptance of at least 90%, with 4% systematic uncertainty on the absolute
energy scale. The discrimination measurement on surface was limited by nuclear
recoils induced by cosmic-ray generated neutrons. This was improved by moving
the detector to the SNOLAB underground laboratory, where the reduced background
rate allowed the same measurement with only a double-coincidence tag.
The combined data set contains events. One of those, in the
underground data set, is in the nuclear-recoil region of interest. Taking into
account the expected background of 0.48 events coming from random pileup, the
resulting upper limit on the electronic recoil contamination is
(90% C.L.) between 44-89 keVee and for a nuclear recoil
acceptance of at least 90%, with 6% systematic uncertainty on the absolute
energy scale.
We developed a general mathematical framework to describe PSD parameter
distributions and used it to build an analytical model of the distributions
observed in DEAP-1. Using this model, we project a misidentification fraction
of approx. for an electron-equivalent energy threshold of 15 keV for
a detector with 8 PE/keVee light yield. This reduction enables a search for
spin-independent scattering of WIMPs from 1000 kg of liquid argon with a
WIMP-nucleon cross-section sensitivity of cm, assuming
negligible contribution from nuclear recoil backgrounds.Comment: Accepted for publication in Astroparticle Physic
Recommended from our members
Tests of Lorentz invariance at the Sudbury Neutrino Observatory
Experimental tests of Lorentz symmetry in systems of all types are critical for ensuring that the basic assumptions of physics are well founded. Data from all phases of the Sudbury Neutrino Observatory, a kiloton-scale heavy water Cherenkov detector, are analyzed for possible violations of Lorentz symmetry in the neutrino sector. Such violations would appear as one of eight possible signal types in the detector: six seasonal variations in the solar electron neutrino survival probability differing in energy and time dependence and two shape changes to the oscillated solar neutrino energy spectrum. No evidence for such signals is observed, and limits on the size of such effects are established in the framework of the standard model extension, including 38 limits on previously unconstrained operators and improved limits on 16 additional operators. This makes limits on all minimal, Dirac-type Lorentz violating operators in the neutrino sector available for the first time
Recommended from our members
Cosmogenic neutron production at the Sudbury Neutrino Observatory
Neutrons produced in nuclear interactions initiated by cosmic-ray muons present an irreducible background to many rare-event searches, even in detectors located deep underground. Models for the production of these neutrons have been tested against previous experimental data, but the extrapolation to deeper sites is not well understood. Here we report results from an analysis of cosmogenically produced neutrons at the Sudbury Neutrino Observatory. A specific set of observables are presented, which can be used to benchmark the validity of geant4 physics models. In addition, the cosmogenic neutron yield, in units of 10-4 cm2/(g·μ), is measured to be 7.28±0.09(stat)-1.12+1.59(syst) in pure heavy water and 7.30±0.07(stat)-1.02+1.40(syst) in NaCl-loaded heavy water. These results provide unique insights into this potential background source for experiments at SNOLAB
Recommended from our members
Low-Multiplicity Burst Search At The Sudbury Neutrino Observatory
Results are reported from a search for low-multiplicity neutrino bursts in the Sudbury Neutrino Observatory. Such bursts could indicate the detection of a nearby core-collapse supernova explosion. The data were taken from Phase I (1999 November-2001 May), when the detector was filled with heavy water, and Phase II (2001 July-2003 August), when NaCl was added to the target. The search was a blind analysis in which the potential backgrounds were estimated and analysis cuts were developed to eliminate such backgrounds with 90% confidence before the data were examined. The search maintained a greater than 50% detection probability for standard supernovae occurring at a distance of up to 60 kpc for Phase I and up to 70 kpc for Phase II. No low-multiplicity bursts were observed during the data-taking period.Natural Sciences and Engineering Research Council, CanadaIndustry Canada, CanadaNational Research Council, CanadaNorthern Ontario Heritage Fund, CanadaAtomic Energy of Canada, Ltd., CanadaOntario Power Generation, CanadaHigh Performance Computing Virtual Laboratory, CanadaCanada Foundation for Innovation, CanadaCanada Research Chairs, CanadaDepartment of Energy, USNational Energy Research Scientific Computing Center, USAlfred P. Sloan Foundation, USScience and Technology Facilities Council, UKFundacao para a Ciencia e a Technologia, PortugalAstronom
- …