324 research outputs found
Tensile testing of cellulose based natural fibers for structural composite applications
A series of tensile tests were conducted on a Lloyd LRX tensile testing machine for numerous natural fibers deemed potential candidates for development in composite applications. The tensile tests were conducted on the fibers jute, kenaf, flax, abaca, sisal, hemp, and coir for samples exposed to moisture conditions of (1) room temperature and humidity, (2) 65% moisture content, (3) 90% moisture content, and (4) soaked fiber. These seven fibers were then tested for the four conditions and the mechanical properties of tensile strength, tensile strain to failure, and Young's modulus were calculated for the results. These results were then compared and verified with those from the literature, with some of the fibers showing distinctly promising potential. Additionally, a study on the effect of alkalization using 3% NaOH solution was carried out on flax, kenaf, abaca, and sisal to observe impact that this common fiber pre-treatment process has on fiber mechanical properties. The result of the investigation indicated that over treatment of natural fibers using NaOH could have a negative effect on the base fiber properties. It is consequently apparent that a treatment time of less than 10 min is sufficient to remove hemicelluloses and to give the optimum effect
Mode I fracture toughness of optimized alkali-treated Bambusa Vulgaris bamboo by Box-Behnken design.
Alkaline treatment is widely being used to treat natural fibres and it improves the fibre surface for better bonding with the polymer matrix. The aim of this study is to optimize the alkaline treatment variables such as sodium hydroxide (NaOH) concentration, soaking and drying time that influence the strength of natural fibres, including bamboo. In this study, Box-Behnken design (BBD) of the response surface method was employed to set an experimental parameter of alkaline treatment for the bamboo specimen. In order to investigate the effect of treatment conditions on crack propagation behaviour of the bamboo along the longitudinal direction, Mode I interlaminar fracture toughness (GIC) test was carried out. It can be suggested from the statistical analysis approach (ANOVA) that bamboo treated with 1wt% concentration of NaOH is able to reach fracture toughness value up to 365.86J/m2, which differs by only 0.82% from the experimental finding. It is also shown that all proposed variables for treatment in this study i.e. the concentration of the NaOH is highly significant with the soaking and drying time
PLA/WOOD BIOCOMPOSITES: IMPROVING COMPOSITE STRENGTH BY CHEMICAL TREATMENT OF THE FIBERS
A resol type phenolic resin was prepared for the impregnation of wood particles used for the reinforcement of PLA. A preliminary study showed that the resin penetrates wood with rates depending on the concentration of the solution and on temperature. Treatment with a solution of 1 wt% resin resulted in a considerable increase of composite strength and decrease of water absorption. Composite strength improved as a result of increased inherent strength of the wood, but interfacial adhesion might be modified as well. When wood was treated with resin solutions of larger concentrations, the strength of the composites decreased, first slightly, then drastically to a very small value. A larger amount of resin results in a thick coating on wood with inferior mechanical properties. At large resin contents the mechanism of deformation changes; the thick coating breaks very easily leading to the catastrophic failure of the composites at very small loads
Biocomposite from polylactic acid and lignocellulosic fibers: structure-property correlations
ABSTRACT
PLA biocomposites were prepared using three corncob fractions and a wood fiber as reference. The composites were characterized by tensile testing, scanning electron (SEM) and polarization optical (POM) microscopy. Micromechanical deformation processes were followed by acoustic emission measurements. The different strength of the components was proved by direct measurements. Two consecutive micromechanical deformation processes were detected in composites containing the heavy fraction of corncob, which were assigned to the fracture of soft and hard particles, respectively. The fracture of soft particles does not result in the failure of the composites that is initi-ated either by the fracture of hard particles or by matrix cracking. Very large particles debond easily from the matrix resulting in catastrophic failure at very low stresses. At sufficiently large shear stresses large particles break easily during compounding, thus reinforcement depending on interfacial adhesion was practically the same in all composites irrespectively of initial fiber characteristics
Fiber association and network formation in PLA/lignocellulosic fiber composites.
PLA composites were prepared in an internal mixer with a lignocellulosic fiber having relatively large aspect ratio. Fiber content changed between 0 and 60 vol% and the homogenized material was compression molded to 1 mm thick plates. The composites showed anomalous behavior above certain fiber content. Their modulus and especially their strength decreased drastically and modeling also proved the loss of reinforcement at large fiber contents. Micromechanical testing showed that the mechanism of deformation and failure changes at a critical fiber content. Microscopic analysis indi-cated the formation of a network purely from geometrical reasons. The inherent strength of the network is very small because of the weak forces acting among the fibers. This weak inherent strength makes the structure of the composites very sensitive to pro-cessing conditions, and decreases strength, reproducibility as well as reliability
A mild alkali treated jute fibre controlling the hydration behaviour of greener cement paste
To reduce the antagonistic effect of jute fibre on the setting and hydration of jute reinforced cement, modified jute fibre reinforcement would be a unique approach. The present investigation deals with the effectiveness of mild alkali treated (0.5%) jute fibre on the setting and hydration behaviour of cement. Setting time measurement, hydration test and analytical characterizations of the hardened samples (viz., FTIR, XRD, DSC, TGA and free lime estimation) were used to evaluate the effect of alkali treated jute fibre. From the hydration test, the time (t) required to reach maximum temperature for the hydration of control cement sample is estimated to be 860 min, whilst the time (t) is measured to be 1040 min for the hydration of a raw jute reinforced cement sample. However, the time (t) is estimated to be 1020 min for the hydration of an alkali treated jute reinforced cement sample. Additionally, from the analytical characterizations, it is determined that fibre-cement compatibility is increased and hydration delaying effect is minimized by using alkali treated jute fibre as fibre reinforcement. Based on the analyses, a model has been proposed to explain the setting and hydration behaviour of alkali treated jute fibre reinforced cement composite
Thermal and mechanical characterization of epoxy resins (ELO and ESO) cured with anhydrides
In this work we have developed polymeric materials from epoxidized vegetable oils in order to obtain materials with excellent mechanical properties for use as green matrix composites. Epoxidized soybean oil (ESO), epoxidized linseed oil (ELO) and different mixtures of the two oils were used to produce the polymers. Phthalic anhydride (17 mol%) and maleic anhydride (83 mol%) which has a eutectic reaction temperature of 48 °C were used as crosslinking agents while benzyl dimethyl amine (BDMA) and ethylene glycol were used as the catalyst and initiator, respectively. The results showed that samples 100ELO and 80ELO20ESO could be used as a matrix in green composites because they demonstrated good mechanical properties. © 2012 AOCS (outside the USA).This work is part of the project IPT-310000-2010-037,''ECOTEXCOMP: Research and development of textile structures useful as reinforcement of composite materials with marked ecological character'' funded by the "Ministerio de Ciencia e Innovacion", with financial aid of 189,540.20 EUR, within the "Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica 2008-2011" and funded by the European Union through FEDER funds, Technology Fund 2007-2013, Operational Programme on R + D + i for and on behalf of the companies.Samper Madrigal, MD.; Fombuena Borrás, V.; Boronat Vitoria, T.; García Sanoguera, D.; Balart Gimeno, RA. (2012). Thermal and mechanical characterization of epoxy resins (ELO and ESO) cured with anhydrides. Journal of the American Oil Chemists' Society. 89(8):1521-1528. https://doi.org/10.1007/s11746-012-2041-yS15211528898Averous L (2004) Biodegradable multiphase systems based on plasticized starch: a review. J Macromol Sci Polym Rev C44:231–274Bledzki AK, Jaszkiewicz A (2010) Mechanical performance of biocomposites based on PLA and PHBV reinforced with natural fibres—a comparative study to PP. Compos Sci Technol 70:1687–1696Raquez JM, Deleglise M, Lacrampe MF, Krawczak P (2010) Thermosetting (bio)materials derived from renewable resources: a critical review. Prog Polym Sci 35:487–509Charlet K, Jernot JP, Gomina M, Bizet L, Breard J (2010) Mechanical properties of flax fibers and of the derived unidirectional composites. J Compos Mater 44:2887–2896Barreto ACH, Esmeraldo MA, Rosa DS, Fechine PBA, Mazzetto SE (2010) Cardanol biocomposites reinforced with jute fiber: microstructure, biodegradability, and mechanical properties. Polym Compos 31:1928–1937Thakur VK, Singha AS (2010) Physico-chemical and mechanical characterization of natural fibre reinforced polymer composites. Iran Polym J 19:3–16Schmitz WR, Wallace JG (1954) Epoxidation of methyl oleate with hydrogen peroxide. J Am Oil Chem Soc 31:363–365La Scala J, Wool RP (2002) Effect of FA composition on epoxidation kinetics of TAG. J Am Oil Chem Soc 79:373–378de Espinosa LM, Ronda JC, Galia M, Cadiz V (2008) A new enone-containing triglyceride derivative as precursor of thermosets from renewable resources. J Polym Sci Pol Chem 46:6843–6850Gerbase AE, Petzhold CL, Costa APO (2002) Dynamic mechanical and thermal behavior of epoxy resins based on soybean oil. J Am Oil Chem Soc 79:797–802Boquillon N, Fringant C (2000) Polymer networks derived from curing of epoxidised linseed oil: influence of different catalysts and anhydride hardeners. Polymer 41:8603–8613Montserrat S, Flaque C, Calafell M, Andreu G, Malek J (1995) Influence of the accelerator concentration on the curing reaction of an epoxy-anhydride system. Thermochim Acta 269:213–229Zacharuk M, Becker D, Coelho LAF, Pezzin SH (2011) Study of the reaction between polyethylene glycol and epoxy resins using N,N-dimethylbenzylamine as catalyst. Polimeros 21:73–77Lozada Z, Suppes GJ, Tu YC, Hsieh FH (2009) Soy-based polyols from oxirane ring opening by alcoholysis reaction. J Appl Polym Sci 113:2552–256
- …