69 research outputs found

    Biophysics of Lower Back Pain

    Get PDF
    Lower back pain is one of the most predominant problems in the general public. It has been traditionally regarded as a mechanical problem by both orthodox and complementary practitioners. This study was conducted to evaluate the lumbosacral angle which is an inherent cause of lower back pain and also investigate the shearing and compressing forces on the lumbar spine. The study was carried out at in a Hospital within the 
. Metropolis. A total of 210 patients’ data consisting of 72 males and 138 females was considered. The lumbosacral angle was measured using Ferguson’s method with the MicroDicom software. Patients were grouped into ages; 0 – 20, 21 – 30, 31 – 40, 41 – 50, 51 – 60, 61 – 70, 71 – 80 and 81 – 100. The number of patients in each age group was; 7, 12, 26, 28, 56, 27, 11 and 7 respectively. The average lumbosacral angle evaluated, according to age group was; 36.3Âș, 39Âș, 35.81Âș, 36.23Âș, 36.55Âș, 37.5Âș, 35.89 Âș and 34.92Âș. The overall lumbosacral mean was determined to be 36.50Âș. The lumbosacral angle evaluated was used to determine the corresponding compressive and shear forces at the lumbar region which are the principal predictors of the lower back pain

    The Atacama Cosmology Telescope: Two-Season ACTPol Spectra and Parameters

    Get PDF
    We present the temperature and polarization angular power spectra measured by the Atacama Cosmology Telescope Polarimeter (ACTPol). We analyze night-time data collected during 2013-14 using two detector arrays at 149 GHz, from 548 deg2^2 of sky on the celestial equator. We use these spectra, and the spectra measured with the MBAC camera on ACT from 2008-10, in combination with Planck and WMAP data to estimate cosmological parameters from the temperature, polarization, and temperature-polarization cross-correlations. We find the new ACTPol data to be consistent with the LCDM model. The ACTPol temperature-polarization cross-spectrum now provides stronger constraints on multiple parameters than the ACTPol temperature spectrum, including the baryon density, the acoustic peak angular scale, and the derived Hubble constant. Adding the new data to planck temperature data tightens the limits on damping tail parameters, for example reducing the joint uncertainty on the number of neutrino species and the primordial helium fraction by 20%.Comment: 23 pages, 25 figure

    TOI-954 B And K2-329 B: Short-Period Saturn-Mass Planets That Test Whether Irradiation Leads To Inflation

    Get PDF
    We report the discovery of two short-period Saturn-mass planets, one transiting the G subgiant TOI-954 (TIC 44792534, V = 10.343, T = 9.78) observed in TESS sectors 4 and 5 and one transiting the G dwarf K2-329 (EPIC 246193072, V = 12.70, K = 10.67) observed in K2 campaigns 12 and 19. We confirm and characterize these two planets with a variety of ground-based archival and follow-up observations, including photometry, reconnaissance spectroscopy, precise radial velocity, and high-resolution imaging. Combining all available data, we find that TOI-954 b has a radius of 0.852−0.062+0.053 RJ{0.852}_{-0.062}^{+0.053}\,{R}_{{\rm{J}}}and a mass of 0.174−0.017+0.018{0.174}_{-0.017}^{+0.018}MJ and is in a 3.68 day orbit, while K2-329 b has a radius of 0.774−0.024+0.026 RJ{0.774}_{-0.024}^{+0.026}\,{R}_{{\rm{J}}}and a mass of 0.260−0.022+0.020{0.260}_{-0.022}^{+0.020}MJ and is in a 12.46 day orbit. As TOI-954 b is 30 times more irradiated than K2-329 b but more or less the same size, these two planets provide an opportunity to test whether irradiation leads to inflation of Saturn-mass planets and contribute to future comparative studies that explore Saturn-mass planets at contrasting points in their lifetimes

    The TESS Grand Unified Hot Jupiter Survey. I. Ten TESS Planets

    Get PDF
    We report the discovery of ten short-period giant planets (TOI-2193A b, TOI-2207 b, TOI-2236 b, TOI-2421 b, TOI-2567 b, TOI-2570 b, TOI-3331 b, TOI-3540A b, TOI-3693 b, TOI-4137 b). All of the planets were identified as planet candidates based on periodic flux dips observed by NASA's Transiting Exoplanet Survey Satellite (TESS). The signals were confirmed to be from transiting planets using ground-based time-series photometry, high angular resolution imaging, and high-resolution spectroscopy coordinated with the TESS Follow-up Observing Program. The ten newly discovered planets orbit relatively bright F and G stars (G<12.5G < 12.5,~TeffT_\mathrm{eff} between 4800 and 6200 K). The planets' orbital periods range from 2 to 10~days, and their masses range from 0.2 to 2.2 Jupiter masses. TOI-2421 b is notable for being a Saturn-mass planet and TOI-2567 b for being a ``sub-Saturn'', with masses of 0.322±0.0730.322\pm 0.073 and 0.195±0.0300.195\pm 0.030 Jupiter masses, respectively. In most cases, we have little information about the orbital eccentricities. Two exceptions are TOI-2207 b, which has an 8-day period and a detectably eccentric orbit (e=0.17±0.05e = 0.17\pm0.05), and TOI-3693 b, a 9-day planet for which we can set an upper limit of e<0.052e < 0.052. The ten planets described here are the first new planets resulting from an effort to use TESS data to unify and expand on the work of previous ground-based transit surveys in order to create a large and statistically useful sample of hot Jupiters.Comment: 44 pages, 15 tables, 21 figures; revised version submitted to A

    TESS Delivers Five New Hot Giant Planets Orbiting Bright Stars From The Full-Frame Images

    Get PDF
    We present the discovery and characterization of five hot and warm Jupiters—TOI-628 b (TIC 281408474; HD 288842), TOI-640 b (TIC 147977348), TOI-1333 b (TIC 395171208, BD+47 3521A), TOI-1478 b (TIC 409794137), and TOI-1601 b (TIC 139375960)—based on data from NASA\u27s Transiting Exoplanet Survey Satellite (TESS). The five planets were identified from the full-frame images and were confirmed through a series of photometric and spectroscopic follow-up observations by the TESS Follow-up Observing Program Working Group. The planets are all Jovian size (RP = 1.01–1.77 RJ) and have masses that range from 0.85 to 6.33 MJ. The host stars of these systems have F and G spectral types (5595 ≀ Teff ≀ 6460 K) and are all relatively bright (9.5 \u3c V \u3c 10.8, 8.2 \u3c K \u3c 9.3), making them well suited for future detailed characterization efforts. Three of the systems in our sample (TOI-640 b, TOI-1333 b, and TOI-1601 b) orbit subgiant host stars (log\mathrm{log} g \u3c 4.1). TOI-640 b is one of only three known hot Jupiters to have a highly inflated radius (RP \u3e 1.7 RJ, possibly a result of its host star\u27s evolution) and resides on an orbit with a period longer than 5 days. TOI-628 b is the most massive, hot Jupiter discovered to date by TESS with a measured mass of 6.31−0.30+0.28{6.31}_{-0.30}^{+0.28}MJ and a statistically significant, nonzero orbital eccentricity of e = 0.074−0.022+0.021{0.074}_{-0.022}^{+0.021}. This planet would not have had enough time to circularize through tidal forces from our analysis, suggesting that it might be remnant eccentricity from its migration. The longest-period planet in this sample, TOI-1478 b (P = 10.18 days), is a warm Jupiter in a circular orbit around a near-solar analog. NASA\u27s TESS mission is continuing to increase the sample of well-characterized hot and warm Jupiters, complementing its primary mission goals

    KELT-25 B And KELT-26 B: A Hot Jupiter And A Substellar Companion Transiting Young A Stars Observed By TESS

    Get PDF
    We present the discoveries of KELT-25 b (TIC 65412605, TOI-626.01) and KELT-26 b (TIC 160708862, TOI-1337.01), two transiting companions orbiting relatively bright, early A stars. The transit signals were initially detected by the KELT survey and subsequently confirmed by Transiting Exoplanet Survey Satellite (TESS) photometry. KELT-25 b is on a 4.40 day orbit around the V = 9.66 star CD-24 5016 (Teff=8280−180+440{T}_{\mathrm{eff}}={8280}_{-180}^{+440} K, Msstarf = 2.18−0.11+0.12{2.18}_{-0.11}^{+0.12} M⊙), while KELT-26 b is on a 3.34 day orbit around the V = 9.95 star HD 134004 (Teff{T}_{\mathrm{eff}} = 8640−240+500{8640}_{-240}^{+500}K, Msstarf = 1.93−0.16+0.14{1.93}_{-0.16}^{+0.14}M⊙), which is likely an Am star. We have confirmed the substellar nature of both companions through detailed characterization of each system using ground-based and TESS photometry, radial velocity measurements, Doppler tomography, and high-resolution imaging. For KELT-25, we determine a companion radius of RP = 1.64−0.043+0.039{1.64}_{-0.043}^{+0.039}RJ and a 3σ upper limit on the companion\u27s mass of ~64 MJ. For KELT-26 b, we infer a planetary mass and radius of MP = 1.41−0.51+0.43{1.41}_{-0.51}^{+0.43}MJ{M}_{{\rm{J}}}and RP = 1.94−0.058+0.060{1.94}_{-0.058}^{+0.060}RJ. From Doppler tomographic observations, we find KELT-26 b to reside in a highly misaligned orbit. This conclusion is weakly corroborated by a subtle asymmetry in the transit light curve from the TESS data. KELT-25 b appears to be in a well-aligned, prograde orbit, and the system is likely a member of the cluster Theia 449

    Another Shipment of Six Short-Period Giant Planets from TESS

    Get PDF
    We present the discovery and characterization of six short-period, transiting giant planets from NASA's Transiting Exoplanet Survey Satellite (TESS) -- TOI-1811 (TIC 376524552), TOI-2025 (TIC 394050135), TOI-2145 (TIC 88992642), TOI-2152 (TIC 395393265), TOI-2154 (TIC 428787891), & TOI-2497 (TIC 97568467). All six planets orbit bright host stars (8.9 <G< 11.8, 7.7 <K< 10.1). Using a combination of time-series photometric and spectroscopic follow-up observations from the TESS Follow-up Observing Program (TFOP) Working Group, we have determined that the planets are Jovian-sized (RP_{P} = 1.00-1.45 RJ_{J}), have masses ranging from 0.92 to 5.35 MJ_{J}, and orbit F, G, and K stars (4753 << Teff_{eff} << 7360 K). We detect a significant orbital eccentricity for the three longest-period systems in our sample: TOI-2025 b (P = 8.872 days, ee = 0.220±0.0530.220\pm0.053), TOI-2145 b (P = 10.261 days, ee = 0.182−0.049+0.0390.182^{+0.039}_{-0.049}), and TOI-2497 b (P = 10.656 days, ee = 0.196−0.053+0.0590.196^{+0.059}_{-0.053}). TOI-2145 b and TOI-2497 b both orbit subgiant host stars (3.8 << log⁥\log g <<4.0), but these planets show no sign of inflation despite very high levels of irradiation. The lack of inflation may be explained by the high mass of the planets; 5.35−0.35+0.325.35^{+0.32}_{-0.35} MJ_{\rm J} (TOI-2145 b) and 5.21±0.525.21\pm0.52 MJ_{\rm J} (TOI-2497 b). These six new discoveries contribute to the larger community effort to use {\it TESS} to create a magnitude-complete, self-consistent sample of giant planets with well-determined parameters for future detailed studies.Comment: 20 Pages, 6 Figures, 8 Tables, Accepted by MNRA

    Genetic diversity fuels gene discovery for tobacco and alcohol use

    Get PDF
    Tobacco and alcohol use are heritable behaviours associated with 15% and 5.3% of worldwide deaths, respectively, due largely to broad increased risk for disease and injury(1-4). These substances are used across the globe, yet genome-wide association studies have focused largely on individuals of European ancestries(5). Here we leveraged global genetic diversity across 3.4 million individuals from four major clines of global ancestry (approximately 21% non-European) to power the discovery and fine-mapping of genomic loci associated with tobacco and alcohol use, to inform function of these loci via ancestry-aware transcriptome-wide association studies, and to evaluate the genetic architecture and predictive power of polygenic risk within and across populations. We found that increases in sample size and genetic diversity improved locus identification and fine-mapping resolution, and that a large majority of the 3,823 associated variants (from 2,143 loci) showed consistent effect sizes across ancestry dimensions. However, polygenic risk scores developed in one ancestry performed poorly in others, highlighting the continued need to increase sample sizes of diverse ancestries to realize any potential benefit of polygenic prediction.Peer reviewe

    CMB-S4: Forecasting Constraints on Primordial Gravitational Waves

    Full text link
    CMB-S4---the next-generation ground-based cosmic microwave background (CMB) experiment---is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semi-analytic projection tool, targeted explicitly towards optimizing constraints on the tensor-to-scalar ratio, rr, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2--3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments given a desired scientific goal. To form a closed-loop process, we couple this semi-analytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r>0.003r > 0.003 at greater than 5σ5\sigma, or, in the absence of a detection, of reaching an upper limit of r<0.001r < 0.001 at 95%95\% CL.Comment: 24 pages, 8 figures, 9 tables, submitted to ApJ. arXiv admin note: text overlap with arXiv:1907.0447
    • 

    corecore