5,517 research outputs found
Shape transformations in rotating ferrofluid drops
Floating drops of magnetic fluid can be brought into rotation by applying a
rotating magnetic field. We report theoretical and experimental results on the
transition from a spheroid equilibrium shape to non-axissymmetrical three-axes
ellipsoids at certain values of the external field strength. The transitions
are continuous for small values of the magnetic susceptibility and show
hysteresis for larger ones. In the non-axissymmetric shape the rotational
motion of the drop consists of a vortical flow inside the drop combined with a
slow rotation of the shape. Nonlinear magnetization laws are crucial to obtain
quantitative agreement between theory and experiment.Comment: 4 pages, 3 figure
The MacMahon R-matrix
We introduce an -matrix acting on the tensor product of MacMahon
representations of Ding-Iohara-Miki (DIM) algebra
. This -matrix acts on pairs
of Young diagrams and retains the nice symmetry of the DIM algebra under
the permutation of three deformation parameters , and
. We construct the intertwining operator for a tensor product of
the horizontal Fock representation and the vertical MacMahon representation and
show that the intertwiners are permuted using the MacMahon -matrix.Comment: 39 page
Some remarks on one-dimensional force-free Vlasov-Maxwell equilibria
The conditions for the existence of force-free non-relativistic
translationally invariant one-dimensional (1D) Vlasov-Maxwell (VM) equilibria
are investigated using general properties of the 1D VM equilibrium problem. As
has been shown before, the 1D VM equilibrium equations are equivalent to the
motion of a pseudo-particle in a conservative pseudo-potential, with the
pseudo-potential being proportional to one of the diagonal components of the
plasma pressure tensor. The basic equations are here derived in a different way
to previous work. Based on this theoretical framework, a necessary condition on
the pseudo-potential (plasma pressure) to allow for force-free 1D VM equilibria
is formulated. It is shown that linear force-free 1D VM solutions, which so far
are the only force-free 1D VM solutions known, correspond to the case where the
pseudo-potential is an attractive central potential. A general class of
distribution functions leading to central pseudo-potentials is discussed.Comment: Physics of Plasmas, accepte
Entropy rate defined by internal wave scattering in long-range propagation
Author Posting. © Acoustical Society of America, 2015. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 138 (2015): 1353, doi:10.1121/1.4928617.The reduction of information capacity of the ocean sound channel due to scattering by internal waves is a potential problem for acoustic communication, navigation, and remote sensing over long ranges. In spite of recent progress in research on acoustic signal scattering by random internal waves and the fact that random internal waves are ubiquitous in the world oceans, there is no clear understanding of how these waves influence data communication performance. The entropy decrease resulting from scattering by internal waves is an important measure of information loss. Here a rigorous calculation of the entropy is carried out using second moment transport theory equations with random sound-speed perturbations obeying the Garrett–Munk internal-wave model. It is shown that full-wave rate of entropy is of the same order of magnitude as the Kolmogorov–Sinai entropy and Lyapunov exponents for the relevant ray trajectories. The correspondence between full-wave and ray entropies suggests a correspondence between full-wave scattering and ray chaos near statistical saturation. The relatively small level of entropy rate during propagation through the random internal-wave field shows that scattering by internal waves is likely not an essential limitation for data rate and channel capacity.This work was supported in part by Office of Naval Research grant
Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer
We have studied temperature dependences of electron transport in graphene and
its bilayer and found extremely low electron-phonon scattering rates that set
the fundamental limit on possible charge carrier mobilities at room
temperature. Our measurements have shown that mobilities significantly higher
than 200,000 cm2/Vs are achievable, if extrinsic disorder is eliminated. A
sharp (threshold-like) increase in resistivity observed above approximately
200K is unexpected but can qualitatively be understood within a model of a
rippled graphene sheet in which scattering occurs on intra-ripple flexural
phonons
Electric Field Effect in Atomically Thin Carbon Films
We report a naturally-occurring two-dimensional material (graphene that can
be viewed as a gigantic flat fullerene molecule, describe its electronic
properties and demonstrate all-metallic field-effect transistor, which uniquely
exhibits ballistic transport at submicron distances even at room temperature
- …