2,849 research outputs found
Involving experts by experience in craniofacial research
Many areas of health research increasingly involve end users of research (typically patients and their families/caregivers) in study design, management, and dissemination. Beyond recruiting patients as research participants, the shift is towards engaging patients, parents and caregivers as active partners on the research team, who are recognised and valued as ‘experts-by-experience’ (EbyE). Currently, involving EbyE is not routine in global craniofacial research. This paper highlights the value of EbyE involvement, addresses how to incorporate EbyE at all stages of research and discusses key considerations in facilitating positive experiences for EbyE
Recommended from our members
Space weather driven changes in lower atmosphere phenomena
During a period of heliospheric disturbance in 2007-9 associated with a co-rotating interaction region (CIR), a characteristic periodic variation becomes apparent in neutron monitor data. This variation is phase locked to periodic heliospheric current sheet crossings. Phase-locked electrical variations are also seen in the terrestrial lower atmosphere in the southern UK, including an increase in the vertical conduction current density of fair weather atmospheric electricity during increases in the neutron monitor count rate and energetic proton count rates measured by spacecraft. At the same time as the conduction current increases, changes in the cloud microphysical properties lead to an increase in the detected height of the cloud base at Lerwick Observatory, Shetland, with associated changes in surface meteorological quantities. As electrification is expected at the base of layer clouds, which can influence droplet properties, these observations of phase-locked thermodynamic, cloud, atmospheric electricity and solar sector changes are not inconsistent with a heliospheric disturbance driving lower troposphere changes
A statistical survey of dayside pulsed ionospheric flows as seen by the CUTLASS Finland HF radar
International audienceNearly two years of 2-min resolution data and 7- to 21-s resolution data from the CUTLASS Finland HF radar have undergone Fourier analysis in order to study statistically the occurrence rates and repetition frequencies of pulsed ionospheric flows in the noon-sector high-latitude ionosphere. Pulsed ionospheric flow bursts are believed to be the ionospheric footprint of newly reconnected geomagnetic field lines, which occur during episodes of magnetic flux transfer to the terrestrial magnetosphere - flux transfer events or FTEs. The distribution of pulsed ionospheric flows were found to be well grouped in the radar field of view, and to be in the vicinity of the radar signature of the cusp footprint. Two thirds of the pulsed ionospheric flow intervals included in the statistical study occurred when the interplanetary magnetic field had a southward component, supporting the hypothesis that pulsed ionospheric flows are a reconnection-related phenomenon. The occurrence rate of the pulsed ionospheric flow fluctuation period was independent of the radar scan mode. The statistical results obtained from the radar data are compared to occurrence rates and repetition frequencies of FTEs derived from spacecraft data near the magnetopause reconnection region, and to ground-based optical measurements of poleward moving auroral forms. The distributions obtained by the various instruments in different regions of the magnetosphere were remarkably similar. The radar, therefore, appears to give an unbiased sample of magnetopause activity in its routine observations of the cusp footprint
Large-Scale Magnetic-Field Generation by Randomly Forced Shearing Waves
A rigorous theory for the generation of a large-scale magnetic field by
random non-helically forced motions of a conducting fluid combined with a
linear shear is presented in the analytically tractable limit of low Rm and
weak shear. The dynamo is kinematic and due to fluctuations in the net
(volume-averaged) electromotive force. This is a minimal proof-of-concept
quasilinear calculation aiming to put the shear dynamo, a new effect recently
found in numerical experiments, on a firm theoretical footing. Numerically
observed scalings of the wavenumber and growth rate of the fastest growing
mode, previously not understood, are derived analytically. The simplicity of
the model suggests that shear dynamo action may be a generic property of
sheared magnetohydrodynamic turbulence.Comment: Paper substantially rewritten, results changed (relative to v1).
Revised versio
Generation of Magnetic Field by Combined Action of Turbulence and Shear
The feasibility of a mean-field dynamo in nonhelical turbulence with
superimposed linear shear is studied numerically in elongated shearing boxes.
Exponential growth of magnetic field at scales much larger than the outer scale
of the turbulence is found. The charateristic scale of the field is l_B ~
S^{-1/2} and growth rate is gamma ~ S, where S is the shearing rate. This newly
discovered shear dynamo effect potentially represents a very generic mechanism
for generating large-scale magnetic fields in a broad class of astrophysical
systems with spatially coherent mean flows.Comment: 4 pages, 5 figures; replaced with revised version that matches the
published PR
Self-similar turbulent dynamo
The amplification of magnetic fields in a highly conducting fluid is studied
numerically. During growth, the magnetic field is spatially intermittent: it
does not uniformly fill the volume, but is concentrated in long thin folded
structures. Contrary to a commonly held view, intermittency of the folded field
does not increase indefinitely throughout the growth stage if diffusion is
present. Instead, as we show, the probability-density function (PDF) of the
field strength becomes self-similar. The normalized moments increase with
magnetic Prandtl number in a powerlike fashion. We argue that the
self-similarity is to be expected with a finite flow scale and system size. In
the nonlinear saturated state, intermittency is reduced and the PDF is
exponential. Parallels are noted with self-similar behavior recently observed
for passive-scalar mixing and for map dynamos.Comment: revtex, 4 pages, 5 figures; minor changes to match published versio
HF radar observations of a quasi‐biennial oscillation in midlatitude mesospheric winds
The equatorial quasi‐biennial oscillation (QBO) is known to be an important source of interannual variability in the middle‐ and high‐latitude stratosphere. The influence of the QBO on the stratospheric polar vortex in particular has been extensively studied. However, the impact of the QBO on the winds of the midlatitude mesosphere is much less clear. We have applied 13 years (2002–2014) of data from the Saskatoon Super Dual Auroral Radar Network HF radar to show that there is a strong QBO signature in the midlatitude mesospheric zonal winds during the late winter months. We find that the Saskatoon mesospheric winds are related to the winds of the equatorial QBO at 50 hPa such that the westerly mesospheric winds strengthen when QBO is easterly, and vice versa. We also consider the situation in the late winter Saskatoon stratosphere using the European Centre for Medium‐Range Weather Forecasts ERA‐Interim reanalysis data set. We find that the Saskatoon stratospheric winds between 7 hPa and 70 hPa weaken when the equatorial QBO at 50 hPa is easterly, and vice versa. We speculate that gravity wave filtering from the QBO‐modulated stratospheric winds and subsequent opposite momentum deposition in the mesosphere plays a major role in the appearance of the QBO signature in the late winter Saskatoon mesospheric winds, thereby coupling the equatorial stratosphere and the midlatitude mesosphere.Key PointsA significant mesospheric QBO signature is observed at Saskatoon using midlatitude SuperDARN HF radar during late winterSaskatoon MQBO signature is significantly correlated with equatorial QBOFiltering of gravity waves through Saskatoon stratospheric winds and opposite momentum deposition in the mesosphere leads to MQBOPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135660/1/jgrd53414.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135660/2/jgrd53414_am.pd
- …