169 research outputs found
Multi-Channel Scheduling for Fast Convergecast in Wireless Sensor Networks
We explore the following fundamental question -
how fast can information be collected from a wireless sensor
network? We consider a number of design parameters such
as, power control, time and frequency scheduling, and routing.
There are essentially two factors that hinder efficient data
collection - interference and the half-duplex single-transceiver
radios. We show that while power control helps in reducing the
number of transmission slots to complete a convergecast under a
single frequency channel, scheduling transmissions on different
frequency channels is more efficient in mitigating the effects of
interference (empirically, 6 channels suffice for most 100-node
networks). With these observations, we define a receiver-based
channel assignment problem, and prove it to be NP-complete on
general graphs. We then introduce a greedy channel assignment
algorithm that efficiently eliminates interference, and compare
its performance with other existing schemes via simulations.
Once the interference is completely eliminated, we show that
with half-duplex single-transceiver radios the achievable schedule
length is lower-bounded by max(2nk â 1,N), where nk is the
maximum number of nodes on any subtree and N is the number
of nodes in the network. We modify an existing distributed time
slot assignment algorithm to achieve this bound when a suitable
balanced routing scheme is employed. Through extensive simulations,
we demonstrate that convergecast can be completed within
up to 50% less time slots, in 100-node networks, using multiple
channels as compared to that with single-channel communication.
Finally, we also demonstrate further improvements that are
possible when the sink is equipped with multiple transceivers
or when there are multiple sinks to collect data
Exactly Solvable Model for the QCD Tricritcal Endpoint
An inclusion of temperature and chemical potential dependent surface tension
into the gas of quark-gluon bags model resolves a long standing problem of a
unified description of the first and second order phase transition with the
cross-over. The suggested model has an exact analytical solution and allows one
to rigorously study the vicinity of the critical endpoint of the deconfinement
phase transition. It is found that at the curve of a zero surface tension
coefficient there must exist the surface induced phase tranition of the 2-nd or
higher order. The present model predicts that the critical endpoint (CEP) of
quantum chromodynamics is the tricritical endpoint.Comment: 14 pages, 3 figures, invited talk given at the International Workshop
``Relativistic Nuclear Physics: from Nuclotron to LHC Energies'', Kiev,
Ukraine, June 18-22, 200
The Gibbs-Thomson formula at small island sizes - corrections for high vapour densities
In this paper we report simulation studies of equilibrium features, namely
circular islands on model surfaces, using Monte-Carlo methods. In particular,
we are interested in studying the relationship between the density of vapour
around a curved island and its curvature-the Gibbs-Thomson formula. Numerical
simulations of a lattice gas model, performed for various sizes of islands,
don't fit very well to the Gibbs-Thomson formula. We show how corrections to
this form arise at high vapour densities, wherein a knowledge of the exact
equation of state (as opposed to the ideal gas approximation) is necessary to
predict this relationship. Exploiting a mapping of the lattice gas to the Ising
model one can compute the corrections to the Gibbs-Thomson formula using high
field series expansions. We also investigate finite size effects on the
stability of the islands both theoretically and through simulations. Finally
the simulations are used to study the microscopic origins of the Gibbs-Thomson
formula. A heuristic argument is suggested in which it is partially attributed
to geometric constraints on the island edge.Comment: 27 pages including 7 figures, tarred, gzipped and uuencoded. Prepared
using revtex and espf.sty. To appear in Phys. Rev.
Collaborative Care for Mental Health in Low- and Middle-Income Countries: A WHO Health Systems Framework Assessment of Three Programs
The collaborative care model is an evidence-based intervention for behavioral and other chronic conditions that has the potential to address the large burden of mental illness globally. Using the World Health Organization Health Systems Framework, the authors present challenges in implementing this model in low- and middle-income countries (LMICs) and discuss strategies to address these challenges based on experiences with three large-scale programs: an implementation research study in a district-level government hospital in rural Nepal, one clinical trial in 50 primary health centers in rural India, and one study in four diabetes clinics in India. Several strategies can be utilized to address implementation challenges and enhance scalability in LMICs, including mobilizing community resources, engaging in advocacy, and strengthening the overall health care delivery system
Atomic step motion during the dewetting of ultra-thin films
We report on three key processes involving atomic step motion during the
dewetting of thin solid films: (i) the growth of an isolated island nucleated
far from a hole, (ii) the spreading of a monolayer rim, and (iii) the zipping
of a monolayer island along a straight dewetting front. Kinetic Monte Carlo
results are in good agreement with simple analytical models assuming
diffusion-limited dynamics.Comment: 7 pages, 5 figure
Decay of isolated surface features driven by the Gibbs-Thomson effect in analytic model and simulation
A theory based on the thermodynamic Gibbs-Thomson relation is presented which
provides the framework for understanding the time evolution of isolated
nanoscale features (i.e., islands and pits) on surfaces. Two limiting cases are
predicted, in which either diffusion or interface transfer is the limiting
process. These cases correspond to similar regimes considered in previous works
addressing the Ostwald ripening of ensembles of features. A third possible
limiting case is noted for the special geometry of "stacked" islands. In these
limiting cases, isolated features are predicted to decay in size with a power
law scaling in time: A is proportional to (t0-t)^n, where A is the area of the
feature, t0 is the time at which the feature disappears, and n=2/3 or 1. The
constant of proportionality is related to parameters describing both the
kinetic and equilibrium properties of the surface. A continuous time Monte
Carlo simulation is used to test the application of this theory to generic
surfaces with atomic scale features. A new method is described to obtain
macroscopic kinetic parameters describing interfaces in such simulations.
Simulation and analytic theory are compared directly, using measurements of the
simulation to determine the constants of the analytic theory. Agreement between
the two is very good over a range of surface parameters, suggesting that the
analytic theory properly captures the necessary physics. It is anticipated that
the simulation will be useful in modeling complex surface geometries often seen
in experiments on physical surfaces, for which application of the analytic
model is not straightforward.Comment: RevTeX (with .bbl file), 25 pages, 7 figures from 9 Postscript files
embedded using epsf. Submitted to Phys. Rev. B A few minor changes made on
9/24/9
Correlating the nanostructure and electronic properties of InAs nanowires
The electronic properties and nanostructure of InAs nanowires are correlated
by creating multiple field effect transistors (FETs) on nanowires grown to have
low and high defect density segments. 4.2 K carrier mobilities are ~4X larger
in the nominally defect-free segments of the wire. We also find that dark field
optical intensity is correlated with the mobility, suggesting a simple route
for selecting wires with a low defect density. At low temperatures, FETs
fabricated on high defect density segments of InAs nanowires showed transport
properties consistent with single electron charging, even on devices with low
resistance ohmic contacts. The charging energies obtained suggest quantum dot
formation at defects in the wires. These results reinforce the importance of
controlling the defect density in order to produce high quality electrical and
optical devices using InAs nanowires.Comment: Related papers at http://pettagroup.princeton.ed
Effects of boundary conditions on magnetization switching in kinetic Ising models of nanoscale ferromagnets
Magnetization switching in highly anisotropic single-domain ferromagnets has
been previously shown to be qualitatively described by the droplet theory of
metastable decay and simulations of two-dimensional kinetic Ising systems with
periodic boundary conditions. In this article we consider the effects of
boundary conditions on the switching phenomena. A rich range of behaviors is
predicted by droplet theory: the specific mechanism by which switching occurs
depends on the structure of the boundary, the particle size, the temperature,
and the strength of the applied field. The theory predicts the existence of a
peak in the switching field as a function of system size in both systems with
periodic boundary conditions and in systems with boundaries. The size of the
peak is strongly dependent on the boundary effects. It is generally reduced by
open boundary conditions, and in some cases it disappears if the boundaries are
too favorable towards nucleation. However, we also demonstrate conditions under
which the peak remains discernible. This peak arises as a purely dynamic effect
and is not related to the possible existence of multiple domains. We illustrate
the predictions of droplet theory by Monte Carlo simulations of two-dimensional
Ising systems with various system shapes and boundary conditions.Comment: RevTex, 48 pages, 13 figure
Enhancing the capabilities of LIGO time-frequency plane searches through clustering
One class of gravitational wave signals LIGO is searching for consists of
short duration bursts of unknown waveforms. Potential sources include core
collapse supernovae, gamma ray burst progenitors, and mergers of binary black
holes or neutron stars. We present a density-based clustering algorithm to
improve the performance of time-frequency searches for such gravitational-wave
bursts when they are extended in time and/or frequency, and not sufficiently
well known to permit matched filtering. We have implemented this algorithm as
an extension to the QPipeline, a gravitational-wave data analysis pipeline for
the detection of bursts, which currently determines the statistical
significance of events based solely on the peak significance observed in
minimum uncertainty regions of the time-frequency plane. Density based
clustering improves the performance of such a search by considering the
aggregate significance of arbitrarily shaped regions in the time-frequency
plane and rejecting the isolated minimum uncertainty features expected from the
background detector noise. In this paper, we present test results for simulated
signals and demonstrate that density based clustering improves the performance
of the QPipeline for signals extended in time and/or frequency.Comment: 17 pages, 6 figures. Submitted to CQG on Dec 12, 2008; accepted on
June 18, 200
- âŠ