856 research outputs found
First Steps Toward Change in Teacher Preparation for Elementary Science
Unless introductory undergraduate science classes for prospective elementary teachers actively incorporate the philosophy of inquiry-based learning called for in K-l2 science education refom little will change in elementary science education. Thus, at James Madison University, we have developed a new integrated science core curriculum called Understanding our World [1]. This course sequence was not only designed to fulfill general education science requirements. but also to focus on content areas our students will need to know as teachers. The objectives of these courses are based on the National Science Education Standards and Virginia’s Science Standards of Learning, including earth and space science, chemistry, physics, life sciences, and environmental science [2,3]. As an integrated package, this course sequence addresses basic science content, calculation skills, the philosophy and history of science, the process of how science is done, the role of science in society, and applications of computers and technology in science. Keeping in mind that students tend to teach in the same way they were taught, Understanding our World core classes embrace the concepts associated with reform in elementary math and science
Genomic profile of a squamous cell carcinoma Ex pleomorphic adenoma compared to a head and neck squamous cell carcinoma
[No abstract available]sem informação843393397FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO2011/23204-5; 2011/23366-
Development of a very low-noise cryogenic pre-amplifier for large-area SiPM devices
Silicon Photomultipliers (SiPMs) are an excellent candidate for the
development of large-area light sensors. Large SiPM-based detectors require
low-noise pre-amplifiers to maximize the signal coupling between the sensor and
the readout electronics. This article reports on the development of a low-noise
transimpedance amplifier sensitive to single-photon signals at cryogenic
temperature. The amplifier is used to readout a 1 cm SiPM with a signal
to noise ratio in excess of 40
Atomic Hole Doping of Graphene
Graphene is an excellent candidate for the next generation of electronic
materials due to the strict two-dimensionality of its electronic structure as
well as the extremely high carrier mobility. A prerequisite for the development
of graphene based electronics is the reliable control of the type and density
of the charge carriers by external (gate) and internal (doping) means. While
gating has been successfully demonstrated for graphene flakes and epitaxial
graphene on silicon carbide, the development of reliable chemical doping
methods turns out to be a real challenge. In particular hole doping is an
unsolved issue. So far it has only been achieved with reactive molecular
adsorbates, which are largely incompatible with any device technology. Here we
show by angle-resolved photoemission spectroscopy that atomic doping of an
epitaxial graphene layer on a silicon carbide substrate with bismuth, antimony
or gold presents effective means of p-type doping. Not only is the atomic
doping the method of choice for the internal control of the carrier density. In
combination with the intrinsic n-type character of epitaxial graphene on SiC,
the charge carriers can be tuned from electrons to holes, without affecting the
conical band structure
Measurement of airborne fission products in Chapel Hill, NC, USA from the Fukushima Dai-ichi reactor accident
We present measurements of airborne fission products in Chapel Hill, NC, USA,
from 62 days following the March 11, 2011, accident at the Fukushima Dai-ichi
nuclear power plant. Airborne particle samples were collected daily in air
filters and radio-assayed with two high-purity germanium (HPGe) detectors. The
fission products I-131 and Cs-137 were measured with maximum activities of 4.2
+/- 0.6 mBq/m^3 and 0.42 +/- 0.07 mBq/m^3 respectively. Additional activity
from I-131, I-132, Cs-134, Cs-136, Cs-137 and Te-132 were measured in the same
air filters using a low-background HPGe detector at the Kimballton Underground
Research Facility (KURF).Comment: 10 pages, 4 figure
Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant to Part-per-Million Precision
We report a measurement of the positive muon lifetime to a precision of 1.0
parts per million (ppm); it is the most precise particle lifetime ever
measured. The experiment used a time-structured, low-energy muon beam and a
segmented plastic scintillator array to record more than 2 x 10^{12} decays.
Two different stopping target configurations were employed in independent
data-taking periods. The combined results give tau_{mu^+}(MuLan) =
2196980.3(2.2) ps, more than 15 times as precise as any previous experiment.
The muon lifetime gives the most precise value for the Fermi constant:
G_F(MuLan) = 1.1663788 (7) x 10^-5 GeV^-2 (0.6 ppm). It is also used to extract
the mu^-p singlet capture rate, which determines the proton's weak induced
pseudoscalar coupling g_P.Comment: Accepted for publication in Phys. Rev. Let
Improved Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant
The mean life of the positive muon has been measured to a precision of 11 ppm
using a low-energy, pulsed muon beam stopped in a ferromagnetic target, which
was surrounded by a scintillator detector array. The result, tau_mu =
2.197013(24) us, is in excellent agreement with the previous world average. The
new world average tau_mu = 2.197019(21) us determines the Fermi constant G_F =
1.166371(6) x 10^-5 GeV^-2 (5 ppm). Additionally, the precision measurement of
the positive muon lifetime is needed to determine the nucleon pseudoscalar
coupling g_P.Comment: As published version (PRL, July 2007
The MAJORANA DEMONSTRATOR: A Search for Neutrinoless Double-beta Decay of Germanium-76
The {\sc Majorana} collaboration is searching for neutrinoless double beta
decay using Ge, which has been shown to have a number of advantages in
terms of sensitivities and backgrounds. The observation of neutrinoless
double-beta decay would show that lepton number is violated and that neutrinos
are Majorana particles and would simultaneously provide information on neutrino
mass. Attaining sensitivities for neutrino masses in the inverted hierarchy
region, meV, will require large, tonne-scale detectors with extremely
low backgrounds, at the level of 1 count/t-y or lower in the region of
the signal. The {\sc Majorana} collaboration, with funding support from DOE
Office of Nuclear Physics and NSF Particle Astrophysics, is constructing the
{\sc Demonstrator}, an array consisting of 40 kg of p-type point-contact
high-purity germanium (HPGe) detectors, of which 30 kg will be enriched
to 87% in Ge. The {\sc Demonstrator} is being constructed in a clean
room laboratory facility at the 4850' level (4300 m.w.e.) of the Sanford
Underground Research Facility (SURF) in Lead, SD. It utilizes a compact graded
shield approach with the inner portion consisting of ultra-clean Cu that is
being electroformed and machined underground. The primary aim of the {\sc
Demonstrator} is to show the feasibility of a future tonne-scale measurement in
terms of backgrounds and scalability.Comment: Proceedings for the MEDEX 2013 Conferenc
Contamination Control and Assay Results for the Majorana Demonstrator Ultra Clean Components
The MAJORANA DEMONSTRATOR is a neutrinoless double beta decay experiment
utilizing enriched Ge-76 detectors in 2 separate modules inside of a common
solid shield at the Sanford Underground Research Facility. The DEMONSTRATOR has
utilized world leading assay sensitivities to develop clean materials and
processes for producing ultra-pure copper and plastic components. This
experiment is now operating, and initial data provide new insights into the
success of cleaning and processing. Post production copper assays after the
completion of Module 1 showed an increase in U and Th contamination in finished
parts compared to starting bulk material. A revised cleaning method and
additional round of surface contamination studies prior to Module 2
construction have provided evidence that more rigorous process control can
reduce surface contamination. This article describes the assay results and
discuss further studies to take advantage of assay capabilities for the purpose
of maintaining ultra clean fabrication and process design.Comment: Proceedings of Low Radioactivity Techniques (LRT May 2017, Seoul
- …