283 research outputs found
Nanocomposites and polyethylene blends: two potentially synergistic strategies for HVDC insulation materials with ultra-low electrical conductivity
Among the various requirements that high voltage direct current (HVDC) insulation materials need to satisfy, sufficiently low electrical conductivity is one of the most important. The leading commercial HVDC insulation material is currently an exceptionally clean cross-linked low-density polyethylene (XLPE). Previous studies have reported that the DC-conductivity of low-density polyethylene (LDPE) can be markedly reduced either by including a fraction of high-density polyethylene (HDPE) or by adding a small amount of a well dispersed, semiconducting nanofiller such as Al2O3 coated with a silane. This study demonstrates that by combining these two strategies a synergistic effect can be achieved, resulting in an insulation material with an ultra-low electrical conductivity. The addition of both HDPE and C8–Al2O3 nanoparticles to LDPE resulted in ultra-insulating nanocomposites with a conductivity around 500 times lower than of the neat LDPE at an electric field of 32 kV/mm and 60–90 \ub0C. The new nanocomposite is thus a promising material regarding the electrical conductivity and it can be further optimized since the polyethylene blend and the nanoparticles can be improved independently
Deletion in the EVC2 gene causes chondrodysplastic dwarfism in Tyrolean grey cattle
During the summer of 2013 seven Italian Tyrolean Grey calves were born with abnormally short limbs. Detailed clinical and pathological examination revealed similarities to chondrodysplastic dwarfism. Pedigree analysis showed a common founder, assuming autosomal monogenic recessive transmission of the defective allele. A positional cloning approach combining genome wide association and homozygosity mapping identified a single 1.6 Mb genomic region on BTA 6 that was associated with the disease. Whole genome re-sequencing of an affected calf revealed a single candidate causal mutation in the Ellis van Creveld syndrome 2 (EVC2) gene. This gene is known to be associated with chondrodysplastic dwarfism in Japanese Brown cattle, and dwarfism, abnormal nails and teeth, and dysostosis in humans with Ellis-van Creveld syndrome. Sanger sequencing confirmed the presence of a 2 bp deletion in exon 19 (c.2993_2994ACdel) that led to a premature stop codon in the coding sequence of bovine EVC2, and was concordant with the recessive pattern of inheritance in affected and carrier animals. This loss of function mutation confirms the important role of EVC2 in bone development. Genetic testing can now be used to eliminate this form of chondrodysplastic dwarfism from Tyrolean Grey cattle
Highly structured graphene polyethylene nanocomposites
This research presents an overview of the properties of highly structured, low density polyethylene-graphene nanoplatelets (LDPE-GnP). The influence of nanofiller content, size and processing conditions on the material properties have been investigated. Therefore, rheological and thermal nanocomposite properties were investigated. So-called dry-coating method has been used in order to prepare masterbatches which were thereafter extruded by means of single screw extruder resulting in a strong anisotropy in the extruded samples. Graphene nanoplatelets were oriented in the extrusion direction for all shear rates and flow histories investigated, as confirmed by scanning electron microscopy. The rheological percolation was determined via nonlinear parameters to be around 11wt%. Thermal conductivity measurements revealed strong anisotropy with in-plane conductivity increasing with GnP content
Shape modeling technique KOALA validated by ESA Rosetta at (21) Lutetia
We present a comparison of our results from ground-based observations of
asteroid (21) Lutetia with imaging data acquired during the flyby of the
asteroid by the ESA Rosetta mission. This flyby provided a unique opportunity
to evaluate and calibrate our method of determination of size, 3-D shape, and
spin of an asteroid from ground-based observations. We present our 3-D
shape-modeling technique KOALA which is based on multi-dataset inversion. We
compare the results we obtained with KOALA, prior to the flyby, on asteroid
(21) Lutetia with the high-spatial resolution images of the asteroid taken with
the OSIRIS camera on-board the ESA Rosetta spacecraft, during its encounter
with Lutetia. The spin axis determined with KOALA was found to be accurate to
within two degrees, while the KOALA diameter determinations were within 2% of
the Rosetta-derived values. The 3-D shape of the KOALA model is also confirmed
by the spectacular visual agreement between both 3-D shape models (KOALA pre-
and OSIRIS post-flyby). We found a typical deviation of only 2 km at local
scales between the profiles from KOALA predictions and OSIRIS images, resulting
in a volume uncertainty provided by KOALA better than 10%. Radiometric
techniques for the interpretation of thermal infrared data also benefit greatly
from the KOALA shape model: the absolute size and geometric albedo can be
derived with high accuracy, and thermal properties, for example the thermal
inertia, can be determined unambiguously. We consider this to be a validation
of the KOALA method. Because space exploration will remain limited to only a
few objects, KOALA stands as a powerful technique to study a much larger set of
small bodies using Earth-based observations.Comment: 15 pages, 8 figures, 2 tables, accepted for publication in P&S
Polyethylene Based Ionomers as High Voltage Insulation Materials
Polyethylene based ionomers are demonstrated to feature a thermo-mechanical and dielectric property portfolio that is comparable to cross-linked polyethylene (XLPE), which may enable the design of more sustainable high voltage direct-current (HVDC) power cables, a crucial component of future electricity grids that seamlessly integrate renewable sources of energy. A new type of ionomer is obtained via high-pressure/high-temperature free radical copolymerization of ethylene in the presence of small amounts of ion-pair comonomers comprising amine terminated methacrylates and methacrylic acid. The synthesized ionomers feature a crystallinity, melting temperature, rubber plateau modulus and thermal conductivity like XLPE but remain melt-processable. Moreover, the preparation of the ionomers is free of byproducts, which readily yields a highly insulating material with a low dielectric loss tangent and a low direct-current (DC) electrical conductivity of 1 to 6\ub710−14\ua0S\ua0m−1 at 70\ua0\ub0C and an electric field of 30\ua0kV\ua0mm−1. Evidently, the investigated ionomers represent a promising alternative to XLPE-based high voltage insulation, which may permit to ease the production as well as end-of-use recycling of HVDC power cables by combining the advantages of thermoset and thermoplastic materials while avoiding the formation of byproducts
Limit on the Radiative Neutrinoless Double Electron Capture of Ar from GERDA Phase I
Neutrinoless double electron capture is a process that, if detected, would
give evidence of lepton number violation and the Majorana nature of neutrinos.
A search for neutrinoless double electron capture of Ar has been
performed with germanium detectors installed in liquid argon using data from
Phase I of the GERmanium Detector Array (GERDA) experiment at the Gran Sasso
Laboratory of INFN, Italy. No signal was observed and an experimental lower
limit on the half-life of the radiative neutrinoless double electron capture of
Ar was established: 3.6 10 yr at 90 % C.I.Comment: 7 pages, 3 figure
Origins of the open-circuit voltage in ternary organic solar cells and design rules for minimized voltage losses
The power conversion efficiency of ternary organic solar cells (TOSCs), consisting of one host binary blend and one guest component, remains limited by large voltage losses. The fundamental understanding of the open-circuit voltage (V OC) in TOSCs is controversial, limiting rational design of the guest component. In this study, we systematically investigate how the guest component affects the radiative and non-radiative related parts of V OC of a series of TOSCs using the detailed balanced principle. We highlight that the thermal population of charge-transfer and local exciton states provided by the guest binary blend (that is, the guest-component-based binary blend) has a significant influence on the non-radiative voltage losses. Ultimately, we provide two design rules for enhancing the V OC in TOSCs: high emission yield for the guest binary blend and similar charge-transfer-state energies for host/guest binary blends; high miscibility of the guest component with the low gap component in the host binary blend
Multiplicities of charged pions and unidentified charged hadrons from deep-inelastic scattering of muons off an isoscalar target
Multiplicities of charged pions and unidentified hadrons produced in
deep-inelastic scattering were measured in bins of the Bjorken scaling variable
, the relative virtual-photon energy and the relative hadron energy .
Data were obtained by the COMPASS Collaboration using a 160 GeV muon beam and
an isoscalar target (LiD). They cover the kinematic domain in the photon
virtuality > 1(GeV/c, , and . In addition, a leading-order pQCD analysis was performed using the
pion multiplicity results to extract quark fragmentation functions
Model-independent evidence for contributions to decays
The data sample of decays acquired with the
LHCb detector from 7 and 8~TeV collisions, corresponding to an integrated
luminosity of 3 fb, is inspected for the presence of or
contributions with minimal assumptions about
contributions. It is demonstrated at more than 9 standard deviations that
decays cannot be described with
contributions alone, and that contributions play a dominant role in
this incompatibility. These model-independent results support the previously
obtained model-dependent evidence for charmonium-pentaquark
states in the same data sample.Comment: 21 pages, 12 figures (including the supplemental section added at the
end
- …