3,868 research outputs found
Prospects for Higgs Searches via VBF at the LHC with the ATLAS Detector
We report on the potential for the discovery of a Standard Model Higgs boson
with the vector boson fusion mechanism in the mass range 115
with the ATLAS experiment at the LHC. Feasibility studies at hadron level
followed by a fast detector simulation have been performed for H\to
W^{(*)}W^{(*)}\to l^+l^-\sla{p_T}, and . The results obtained show a large discovery potential in the
range 115. Results obtained with multivariate techniques are
reported for a number of channels.Comment: 14 pages, 4 figures, contributed to 2003 Les Houches Workshop on
Physics at TeV Colliders. Incorporated comments from ATLAS referee
X-Ray Determination of the Variable Rate of Mass Accretion onto TW Hydrae
Diagnostics of electron temperature (T_e), electron density (n_e), and
hydrogen column density (N_H) from the Chandra High Energy Transmission Grating
spectrum of He-like Ne IX in TW Hydrae (TW Hya), in conjunction with a
classical accretion model, allow us to infer the accretion rate onto the star
directly from measurements of the accreting material. The new method introduces
the use of the absorption of Ne IX lines as a measure of the column density of
the intervening, accreting material. On average, the derived mass accretion
rate for TW Hya is 1.5 x 10^{-9} M_{\odot} yr^{-1}, for a stellar magnetic
field strength of 600 Gauss and a filling factor of 3.5%. Three individual
Chandra exposures show statistically significant differences in the Ne IX line
ratios, indicating changes in N_H, T_e, and n_e by factors of 0.28, 1.6, and
1.3, respectively. In exposures separated by 2.7 days, the observations
reported here suggest a five-fold reduction in the accretion rate. This
powerful new technique promises to substantially improve our understanding of
the accretion process in young stars
Higgs Mass and Muon Anomalous Magnetic Moment in Supersymmetric Models with Vector-Like Matters
We study the muon anomalous magnetic moment (muon g-2) and the Higgs boson
mass in a simple extension of the minimal supersymmetric (SUSY) Standard Model
with extra vector-like matters, in the frameworks of gauge mediated SUSY
breaking (GMSB) models and gravity mediation (mSUGRA) models. It is shown that
the deviation of the muon g-2 and a relatively heavy Higgs boson can be
simultaneously explained in large tan-beta region. (i) In GMSB models, the
Higgs mass can be more than 135 GeV (130 GeV) in the region where muon g-2 is
consistent with the experimental value at the 2 sigma (1 sigma) level, while
maintaining the perturbative coupling unification. (ii) In the case of mSUGRA
models with universal soft masses, the Higgs mass can be as large as about 130
GeV when muon g-2 is consistent with the experimental value at the 2 sigma
level. In both cases, the Higgs mass can be above 140 GeV if the g-2 constraint
is not imposed.Comment: 26 pages; 7 figures; corrected typos; minor change
Dominant next-to-leading order QCD corrections to Higgs plus three jet production in vector-boson fusion
We present the calculation of the dominant next to leading order QCD
corrections to Higgs boson production in association with three jets via vector
boson fusion in the form of a NLO parton-level Monte Carlo program. QCD
corrections to integrated cross sections are modest, while the shapes of some
kinematical distributions change appreciably at NLO. Scale uncertainties are
shown to be reduced at NLO for the total cross section and for distributions.
We consider a central jet veto at the LHC and analyze the veto probability for
typical vector boson fusion cuts. Scale uncertainties of the veto probability
are sufficiently small at NLO for precise Higgs coupling measurements at the
LHC.Comment: 40 pages, 17 figures, 2 tables, published versio
A Deep Chandra X-ray Spectrum of the Accreting Young Star TW Hydrae
We present X-ray spectral analysis of the accreting young star TW Hydrae from
a 489 ks observation using the Chandra High Energy Transmission Grating. The
spectrum provides a rich set of diagnostics for electron temperature T_e,
electron density N_e, hydrogen column density N_H, relative elemental
abundances and velocities and reveals its source in 3 distinct regions of the
stellar atmosphere: the stellar corona, the accretion shock, and a very large
extended volume of warm postshock plasma. The presence of Mg XII, Si XIII, and
Si XIV emission lines in the spectrum requires coronal structures at ~10 MK.
Lower temperature lines (e.g., from O VIII, Ne IX, and Mg XI) formed at 2.5 MK
appear more consistent with emission from an accretion shock. He-like Ne IX
line ratio diagnostics indicate that T_e = 2.50 +/- 0.25 MK and N_e = 3.0 +/-
0.2 x 10^(12) cm^(-3) in the shock. These values agree well with standard
magnetic accretion models. However, the Chandra observations significantly
diverge from current model predictions for the postshock plasma. This gas is
expected to cool radiatively, producing O VII as it flows into an increasingly
dense stellar atmosphere. Surprisingly, O VII indicates N_e = 5.7
^(+4.4}_(-1.2) x 10^(11) cm^(-3), five times lower than N_e in the accretion
shock itself, and ~7 times lower than the model prediction. We estimate that
the postshock region producing O VII has roughly 300 times larger volume, and
30 times more emitting mass than the shock itself. Apparently, the shocked
plasma heats the surrounding stellar atmosphere to soft X-ray emitting
temperatures and supplies this material to nearby large magnetic structures --
which may be closed magnetic loops or open magnetic field leading to mass
outflow. (Abridged)Comment: 13 pages (emulateapj style), 10 figures, ApJ, in pres
TW Hya: Spectral Variability, X-Rays, and Accretion Diagnostics
The nearest accreting T Tauri star, TW Hya was observed with spectroscopic
and photometric measurements simultaneous with a long se gmented exposure using
the CHANDRA satellite. Contemporaneous optical photometry from WASP-S indicates
a 4.74 day period was present during this time. Absence of a similar
periodicity in the H-alpha flux and the total X-ray flux points to a different
source of photometric variations. The H-alpha emission line appears
intrinsically broad and symmetric, and both the profile and its variability
suggest an origin in the post-shock cooling region. An accretion event,
signaled by soft X-rays, is traced spectroscopically for the first time through
the optical emission line profiles. After the accretion event, downflowing
turbulent material observed in the H-alpha and H-beta lines is followed by He I
(5876A) broadening. Optical veiling increases with a delay of about 2 hours
after the X-ray accretion event. The response of the stellar coronal emission
to an increase in the veiling follows about 2.4 hours later, giving direct
evidence that the stellar corona is heated in part by accretion. Subsequently,
the stellar wind becomes re-established. We suggest a model that incorporates
this sequential series of events: an accretion shock, a cooling downflow in a
supersonically turbulent region, followed by photospheric and later, coronal
heating. This model naturally explains the presence of broad optical and
ultraviolet lines, and affects the mass accretion rates determined from
emission line profiles.Comment: 61 pages; 22 figures; to appear in The Astrophysical Journa
Heavy MSSM Higgs Bosons at CMS: "LHC wedge" and Higgs-Mass Precision
The search for MSSM Higgs bosons will be an important goal at the LHC. In
order to analyze the search reach of the CMS experiment for the heavy neutral
MSSM Higgs bosons, we combine the latest results for the CMS experimental
sensitivities based on full simulation studies with state-of-the-art
theoretical predictions of MSSM Higgs-boson properties. The experimental
analyses are done assuming an integrated luminosity of 30 or 60 fb^-1. The
results are interpreted as 5 \si discovery contours in MSSM M_A-tan_beta
benchmark scenarios. Special emphasis is put on the variation of the Higgs
mixing parameter mu. While the variation of mu can shift the prospective
discovery reach (and correspondingly the ``LHC wedge'' region) by about Delta
tan_beta= 10, the discovery reach is rather stable with respect to the impact
of other supersymmetric parameters. Within the discovery region we analyze the
accuracy with which the masses of the heavy neutral Higgs bosons can be
determined. An accuracy of 1-4% should be achievable, depending on M_A and
tan_beta.Comment: Talk given by G.W. at EPS07 (Manchester, July 2007) and talk given by
S.H. at SUSY07 (Karlsruhe, July 2007). 4 pages, 2 figure
- …