2,736 research outputs found
Why the iron magnetization in Gd2Fe14B and the spontaneous magnetization of Y2Fe14B depend on temperature differently
This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.It is demonstrated that the temperature dependence of the iron sublattice magnetization in Gd2Fe14B is affected significantly by the Gd-Fe exchange interaction. This is at variance with the common perception that MFe(T) in iron-rich rare-earth intermetallics is determined predominantly by the Fe-Fe exchange. This phenomenon is discussed by considering the modification of the low-energy spin-wave spectrum of Gd2Fe14B, as compared to that of Y2Fe14B, under the influence of the Gd-Fe interaction. The result is of particular significance for evaluating the temperature dependence of the magnetocrystalline anisotropy of iron or cobalt compounds with anisotropic rare earths (e.g., Nd2Fe14B) and in turn, of the hard magnetic properties of such compounds
Electronic inhomogeneity at magnetic domain walls in strongly-correlated systems
We show that nano-scale variations of the order parameter in
strongly-correlated systems can induce local spatial regions such as domain
walls that exhibit electronic properties representative of a different, but
nearby, part of the phase diagram. This is done by means of a Landau-Ginzburg
analysis of a metallic ferromagnetic system near an antiferromagnetic phase
boundary. The strong spin gradients at a wall between domains of different spin
orientation drive the formation of a new type of domain wall, where the central
core is an insulating antiferromagnet, and connects two metallic ferromagnetic
domains. We calculate the charge transport properties of this wall, and find
that its resistance is large enough to account for recent experimental results
in colossal magnetoresistance materials. The technological implications of this
finding for switchable magnetic media are discussed.Comment: Version submitted to Physical Review Letters, except for minor
revisions to reference
Towards the theory of ferrimagnetism
Two-sublattice ferrimagnet, with spin- operators at the
sublattice site and spin- operators at the sublattice
site, is considered. The magnon of the system, the transversal fluctuation
of the total magnetization, is a complicate mixture of the transversal
fluctuations of the sublattice and spins. As a result, the magnons'
fluctuations suppress in a different way the magnetic orders of the and
sublattices and one obtains two phases. At low temperature the
magnetic orders of the and spins contribute to the magnetization of the
system, while at the high temperature , the magnetic order of the
spins with a weaker intra-sublattice exchange is suppressed by magnon
fluctuations, and only the spins with stronger intra-sublattice exchange has
non-zero spontaneous magnetization. The transition is a transition
between two spin-ordered phases in contrast to the transition from spin-ordered
state to disordered state (-transition). There is no additional symmetry
breaking, and the Goldstone boson has a ferromagnetic dispersion in both
phases. A modified spin-wave theory is developed to describe the two phases.
All known Neel's anomalous curves are reproduced, in particular that
with "compensation point". The theoretical curves are compared with
experimental ones for sulpho-spinel and rare earth iron
garnets.Comment: 9 pages, 8 figure
Local Electronic and Magnetic Studies of an Artificial La2FeCrO6 Double Perovskite
Through the utilization of element-resolved polarized x-ray probes, the
electronic and magnetic state of an artificial La2FeCrO6 double perovskite were
explored. Applying unit-cell level control of thin film growth on SrTiO3 (111),
the rock salt double perovskite structure can be created for this system, which
does not have an ordered perovskite phase in the bulk. We find that the Fe and
Cr are in the proper 3+ valence state, but, contrary to previous studies, the
element-resolved magnetic studies find the moments in field are small and show
no evidence of a sizable magnetic moment in the remanent state.Comment: 3 pages, 4 figure
MHC-linked and un-linked class I genes in the wallaby
Background: MHC class I antigens are encoded by a rapidly evolving gene family comprising classical and
non-classical genes that are found in all vertebrates and involved in diverse immune functions. However,
there is a fundamental difference between the organization of class I genes in mammals and non-mammals.
Non-mammals have a single classical gene responsible for antigen presentation, which is linked to the
antigen processing genes, including TAP. This organization allows co-evolution of advantageous class Ia/
TAP haplotypes. In contrast, mammals have multiple classical genes within the MHC, which are separated
from the antigen processing genes by class III genes. It has been hypothesized that separation of classical
class I genes from antigen processing genes in mammals allowed them to duplicate. We investigated this
hypothesis by characterizing the class I genes of the tammar wallaby, a model marsupial that has a novel
MHC organization, with class I genes located within the MHC and 10 other chromosomal locations.
Results: Sequence analysis of 14 BACs containing 15 class I genes revealed that nine class I genes, including
one to three classical class I, are not linked to the MHC but are scattered throughout the genome.
Kangaroo Endogenous Retroviruses (KERVs) were identified flanking the MHC un-linked class I. The
wallaby MHC contains four non-classical class I, interspersed with antigen processing genes. Clear
orthologs of non-classical class I are conserved in distant marsupial lineages.
Conclusion: We demonstrate that classical class I genes are not linked to antigen processing genes in the
wallaby and provide evidence that retroviral elements were involved in their movement. The presence of
retroviral elements most likely facilitated the formation of recombination hotspots and subsequent
diversification of class I genes. The classical class I have moved away from antigen processing genes in
eutherian mammals and the wallaby independently, but both lineages appear to have benefited from this
loss of linkage by increasing the number of classical genes, perhaps enabling response to a wider range of
pathogens. The discovery of non-classical orthologs between distantly related marsupial species is unusual
for the rapidly evolving class I genes and may indicate an important marsupial specific function
Quantum phase transition in the dioptase magnetic lattice
The study of quantum phase transitions, which are zero-temperature phase
transitions between distinct states of matter, is of current interest in
research since it allows for a description of low-temperature properties based
on universal relations. Here we show that the crystal green dioptase
Cu_6Si_6O_18 . 6H_2O, known to the ancient Roman as the gem of Venus, has a
magnetic crystal structure, formed by the Cu(II) ions, which allows for a
quantum phase transition between an antiferromagnetically ordered state and a
quantum spin liquid.Comment: 6 pages, 5 figures, EPL, in pres
- …