23,067 research outputs found

    Polyphosphate granule biogenesis is temporally and functionally tied to cell cycle exit during starvation in Pseudomonas aeruginosa

    Get PDF
    Polyphosphate (polyP) granule biogenesis is an ancient and ubiquitous starvation response in bacteria. Although the ability to make polyP is important for survival during quiescence and resistance to diverse environmental stresses, granule genesis is poorly understood. Using quantitative microscopy at high spatial and temporal resolution, we show that granule genesis in Pseudomonas aeruginosa is tightly organized under nitrogen starvation. Following nucleation as many microgranules throughout the nucleoid, polyP granules consolidate and become transiently spatially organized during cell cycle exit. Between 1 and 3 h after nitrogen starvation, a minority of cells have divided, yet the total granule number per cell decreases, total granule volume per cell dramatically increases, and individual granules grow to occupy diameters as large as ∼200 nm. At their peak, mature granules constitute ∼2% of the total cell volume and are evenly spaced along the long cell axis. Following cell cycle exit, granules initially retain a tight spatial organization, yet their size distribution and spacing relax deeper into starvation. Mutant cells lacking polyP elongate during starvation and contain more than one origin. PolyP promotes cell cycle exit by functioning at a step after DNA replication initiation. Together with the universal starvation alarmone (p)ppGpp, polyP has an additive effect on nucleoid dynamics and organization during starvation. Notably, cell cycle exit is temporally coupled to a net increase in polyP granule biomass, suggesting that net synthesis, rather than consumption of the polymer, is important for the mechanism by which polyP promotes completion of cell cycle exit during starvation

    Rotating Electromagnetic Waves in Toroid-Shaped Regions

    Full text link
    Electromagnetic waves, solving the full set of Maxwell equations in vacuum, are numerically computed. These waves occupy a fixed bounded region of the three dimensional space, topologically equivalent to a toroid. Thus, their fluid dynamics analogs are vortex rings. An analysis of the shape of the sections of the rings, depending on the angular speed of rotation and the major diameter, is carried out. Successively, spherical electromagnetic vortex rings of Hill's type are taken into consideration. For some interesting peculiar configurations, explicit numerical solutions are exhibited.Comment: 27 pages, 40 figure

    Measuring the quantum efficiency of single radiating dipoles using a scanning mirror

    Full text link
    Using scanning probe techniques, we show the controlled manipulation of the radiation from single dipoles. In one experiment we study the modification of the fluorescence lifetime of a single molecular dipole in front of a movable silver mirror. A second experiment demonstrates the changing plasmon spectrum of a gold nanoparticle in front of a dielectric mirror. Comparison of our data with theoretical models allows determination of the quantum efficiency of each radiating dipole.Comment: 4 pages, 4 figure

    Kinetics of Phase Separation in Thin Films: Simulations for the Diffusive Case

    Get PDF
    We study the diffusion-driven kinetics of phase separation of a symmetric binary mixture (AB), confined in a thin-film geometry between two parallel walls. We consider cases where (a) both walls preferentially attract the same component (A), and (b) one wall attracts A and the other wall attracts B (with the same strength). We focus on the interplay of phase separation and wetting at the walls, which is referred to as {\it surface-directed spinodal decomposition} (SDSD). The formation of SDSD waves at the two surfaces, with wave-vectors oriented perpendicular to them, often results in a metastable layered state (also referred to as ``stratified morphology''). This state is reminiscent of the situation where the thin film is still in the one-phase region but the surfaces are completely wet, and hence coated with thick wetting layers. This metastable state decays by spinodal fluctuations and crosses over to an asymptotic growth regime characterized by the lateral coarsening of pancake-like domains. These pancakes may or may not be coated by precursors of wetting layers. We use Langevin simulations to study this crossover and the growth kinetics in the asymptotic coarsening regime.Comment: 39 pages, 19 figures, submitted to Phys.Rev.

    Astrophysical weak-interaction rates for selected A=20A=20 and A=24A=24 nuclei

    Full text link
    We have evaluated the electron capture rates on 20^{20}Ne, 20^{20}F, 24^{24}Mg, 24^{24}Na and the β\beta decay rates for 20^{20}F and 24^{24}Na at temperature and density conditions relevant for the late-evolution stages of stars with M=8M=8-12 M_\odot. The rates are based on recent experimental data and large-scale shell model calculations. We show that the electron capture rates on 20^{20}Ne, 24^{24}Mg and the 20^{20}F, 24^{24}Na β\beta-decay rates are based on data in this astrophysical range, except for the capture rate on 20^{20}Ne, which we predict to have a dominating contribution from the second-forbidden transition between the 20^{20}Ne and 20^{20}F ground states in the density range logρYe(g cm3)=9.3\log \rho Y_e (\mathrm{g~cm}^{-3}) = 9.3-9.6. The dominance of a few individual transitions allows us to present the various rates by analytical expressions at the relevant astrophysical conditions. We also derive the screening corrections to the rates.Comment: 21 pages, 12 figure
    corecore