51,978 research outputs found
An investigation of nanoindentation tests on the single crystal copper thin film via an AFM and MD simulation
Nanoindentation tests performed in an atomic force microscope have been utilized to directly measure the mechanical properties of single crystal metal thin films fabricated by the vacuum vapor deposition technique. Nanoindentation tests were conducted at various indentation depths to study the effect of indentation depths on the mechanical properties of thin films. The results were interpreted by using the Oliver-Pharr method with which direct observation and measurement of the contact area are not required. The elastic modulus of the single crystal copper film at various indentation depths was determined as 67.0±6.9GPa on average which is in reasonable agreement with the results reported by others. The indentation hardness constantly increases with decreasing indentation depth, indicating a strong size effect. In addition to the experimental work, a three-dimensional nanoindentation model of molecular dynamics (MD) simulations with embedded atom method (EAM) potential is proposed to elucidate the mechanics and mechanisms of nanoindentation of thin films from the atomistic point of view. MD simulations results also show that due to the size effect the plastic deformation via amorphous transformation is more favorable than via the generation and propagation of dislocations in nanoindentation of single crystal copper thin films
Bidirectional optimization of the melting spinning process
This is the author's accepted manuscript (under the provisional title "Bi-directional optimization of the melting spinning process with an immune-enhanced neural network"). The final published article is available from the link below. Copyright 2014 @ IEEE.A bidirectional optimizing approach for the melting spinning process based on an immune-enhanced neural network is proposed. The proposed bidirectional model can not only reveal the internal nonlinear relationship between the process configuration and the quality indices of the fibers as final product, but also provide a tool for engineers to develop new fiber products with expected quality specifications. A neural network is taken as the basis for the bidirectional model, and an immune component is introduced to enlarge the searching scope of the solution field so that the neural network has a larger possibility to find the appropriate and reasonable solution, and the error of prediction can therefore be eliminated. The proposed intelligent model can also help to determine what kind of process configuration should be made in order to produce satisfactory fiber products. To make the proposed model practical to the manufacturing, a software platform is developed. Simulation results show that the proposed model can eliminate the approximation error raised by the neural network-based optimizing model, which is due to the extension of focusing scope by the artificial immune mechanism. Meanwhile, the proposed model with the corresponding software can conduct optimization in two directions, namely, the process optimization and category development, and the corresponding results outperform those with an ordinary neural network-based intelligent model. It is also proved that the proposed model has the potential to act as a valuable tool from which the engineers and decision makers of the spinning process could benefit.National Nature Science Foundation of China, Ministry of Education of China, the Shanghai Committee of Science and Technology), and the Fundamental Research Funds for the Central Universities
Non-leptonic two-body weak decays of
We study the non-leptonic two-body weak decays of with () representing as the baryon (meson) states. Based
on the flavor symmetry, we can describe most of the data reexamined by
the BESIII Collaboration with higher precisions. However, our result of is larger than the
current experimental limit of (90\% C.L.) by BESIII. In
addition, we find that , , and , which are accessible
to the BESIII experiments.Comment: 12 pages, 1 figure, revised version accepted by PL
All Maximal Independent Sets and Dynamic Dominance for Sparse Graphs
We describe algorithms, based on Avis and Fukuda's reverse search paradigm,
for listing all maximal independent sets in a sparse graph in polynomial time
and delay per output. For bounded degree graphs, our algorithms take constant
time per set generated; for minor-closed graph families, the time is O(n) per
set, and for more general sparse graph families we achieve subquadratic time
per set. We also describe new data structures for maintaining a dynamic vertex
set S in a sparse or minor-closed graph family, and querying the number of
vertices not dominated by S; for minor-closed graph families the time per
update is constant, while it is sublinear for any sparse graph family. We can
also maintain a dynamic vertex set in an arbitrary m-edge graph and test the
independence of the maintained set in time O(sqrt m) per update. We use the
domination data structures as part of our enumeration algorithms.Comment: 10 page
Measuring Dark Energy with Gamma-Ray Bursts and Other Cosmological Probes
It has been widely shown that the cosmological parameters and dark energy can
be constrained by using data from type-Ia supernovae (SNe Ia), the cosmic
microwave background (CMB) anisotropy, the baryon acoustic oscillation (BAO)
peak from Sloan Digital Sky Survey (SDSS), the X-ray gas mass fraction in
clusters, and the linear growth rate of perturbations at z=0.15 as obtained
from the 2dF Galaxy Redshift Survey. Recently, gamma-ray bursts (GRBs) have
also been argued to be promising standard candles for cosmography. In this
paper, we present constraints on the cosmological parameters and dark energy by
combining a recent GRB sample including 69 events with the other cosmological
probes. First, we find that for the LambdaCDM cosmology this combination makes
the constraints stringent and the best fit is close to the flat universe.
Second, we fit the flat Cardassian expansion model and find that this model is
consistent with the LambdaCDM cosmology. Third, we present constraints on
several two-parameter dark energy models and find that these models are also
consistent with the LambdaCDM cosmology. Finally, we reconstruct the dark
energy equation-of-state parameter w(z) and the deceleration parameter q(z). We
see that the acceleration could have started at a redshift from
z_T=0.40_{-0.08}^{+0.14} to z_T=0.65_{-0.05}^{+0.10}. This difference in the
transition redshift is due to different dark energy models that we adopt. The
most stringent constraint on w(z) lies in the redshift range z\sim 0.3-0.6.Comment: 28 pages, 13 figures, accepted for publication in ApJ. One reference
added, one minor change in the final paragraph of section
Superconducting Gap and Pseudogap in Iron-Based Layered Superconductor La(OF)FeAs
We report high-resolution photoemission spectroscopy of newly-discovered
iron-based layered superconductor La(OF)FeAs (Tc = 24 K). We
found that the superconducting gap shows a marked deviation from the isotropic
s-wave symmetry. The estimated gap size at 5 K is 3.6 meV in the s- or axial
p-wave case, while it is 4.1 meV in the polar p- or d-wave case. We also found
a pseudogap of 15-20 meV above Tc, which is gradually filled-in with increasing
temperature and closes at temperature far above Tc similarly to copper-oxide
high-temperature superconductors.Comment: 4 pages, 3 figures, J. Phys. Soc. Jpn. Vol. 77, No. 6 (2008), in
pres
Spin Polarisability of the Nucleon in the Heavy Baryon Effective Field Theory
We have constructed a heavy baryon effective field theory with photon as an
external field in accordance with the symmetry requirements similar to the
heavy quark effective field theory. By treating the heavy baryon and
anti-baryon equally on the same footing in the effective field theory, we have
calculated the spin polarisabilities of the nucleon at
third order and at fourth-order of the spin-dependent Compton scattering. At
leading order (LO), our results agree with the corresponding results of the
heavy baryon chiral perturbation theory, at the next-to-leading order(NLO) the
results show a large correction to the ones in the heavy baryon chiral
perturbation theory due to baryon-antibaryon coupling terms. The low energy
theorem is satisfied both at LO and at NLO. The contributions arising from the
heavy baryon-antibaryon vertex were found to be significant and the results of
the polarisabilities obtained from our theory is much closer to the
experimental data.Comment: 21pages, title changed, minimal correction
- …
