218 research outputs found
Separated cross sections in \pi^0 electroproduction at threshold at Q^2 = 0.05 GeV^2/c^2
The differential cross sections \sigma_0=\sigma_T+\epsilon \sigma_L,
\sigma_{LT}, and \sigma_{TT} of \pi^0 electroproduction from the proton were
measured from threshold up to an additional center of mass energy of 40 MeV, at
a value of the photon four-momentum transfer of Q^2= 0.05 GeV^2/c^2 and a
center of mass angle of \theta=90^\circ. By an additional out-of-plane
measurement with polarized electrons \sigma_{LT'} was determined. This showed
for the first time the cusp effect above the \pi^+ threshold in the imaginary
part of the s-wave. The predictions of Heavy Baryon Chiral Perturbation Theory
are in disagreement with these data. On the other hand, the data are somewhat
better predicted by the MAID phenomenological model and are in good agreement
with the dynamical model DMT.Comment: 6 pages, 4 figure
The f_LT Response Function of D(e,e'p)n at Q^2=0.33(GeV/c)^2
The interference response function f_LT (R_LT) of the D(e,e'p)n reaction has
been determined at squared four-momentum transfer Q^2 = 0.33 (GeV/c)^2 and for
missing momenta up to p_miss= 0.29 (GeV/c). The results have been compared to
calculations that reproduce f_LT quite well but overestimate the cross sections
by 10 - 20% for missing momenta between 0.1 (GeV/c) and 0.2 (GeV/c) .Comment: 12 Pages, 10 figure
A measurement of the axial form factor of the nucleon by the p(e,e'pi+)n reaction at W=1125 MeV
The reaction p(e,e'pi+)n was measured at the Mainz Microtron MAMI at an
invariant mass of W=1125 MeV and four-momentum transfers of Q^2=0.117, 0.195
and 0.273 (GeV/c)^2. For each value of Q^2, a Rosenbluth separation of the
transverse and longitudinal cross sections was performed. An effective
Lagrangian model was used to extract the `axial mass' from experimental data.
We find a value of M_A=(1.077+-0.039) GeV which is (0.051+-0.044) GeV larger
than the axial mass known from neutrino scattering experiments. This is
consistent with recent calculations in chiral perturbation theory.Comment: 14 pages, 5 figures, uses elsart.cl
Measurement of the recoil polarization in the p (\vec e, e' \vec p) pi^0 reaction at the \Delta(1232) resonance
The recoil proton polarization has been measured in the p (\vec e,e'\vec p)
pi^0 reaction in parallel kinematics around W = 1232 MeV, Q^2 = 0.121 (GeV/c)^2
and epsilon = 0.718 using the polarized c.w. electron beam of the Mainz
Microtron. Due to the spin precession in a magnetic spectrometer, all three
proton polarization components P_x/P_e = (-11.4 \pm 1.3 \pm 1.4) %, P_y =
(-43.1 \pm 1.3 \pm 2.2) %, and P_z/P_e = (56.2 \pm 1.5 \pm 2.6) % could be
measured simultaneously. The Coulomb quadrupole to magnetic dipole ratio CMR =
(-6.4\pm 0.7_{stat}\pm 0.8_{syst}) % was determined from P_x in the framework
of the Mainz Unitary Isobar Model. The consistency among the reduced
polarizations and the extraction of the ratio of longitudinal to transverse
response is discussed.Comment: 5 pages LaTeX, 1 table, 2 eps figure
Precise Neutron Magnetic Form Factors
Precise data on the neutron magnetic form factor G_{mn} have been obtained
with measurements of the ratio of cross sections of D(e,e'n) and D(e,e'p) up to
momentum transfers of Q^2 = 0.9 (GeV/c)^2. Data with typical uncertainties of
1.5% are presented. These data allow for the first time to extract a precise
value of the magnetic radius of the neutron.Comment: 10 pages, 2 figures, submitted to Physics Letters
Coherent \pi^0 threshold production from the deuteron at Q^2 = 0.1 GeV^2/c^2
First data on coherent threshold \pi^0 electroproduction from the deuteron
taken by the A1 Collaboration at the Mainz Microtron MAMI are presented. At a
four-momentum transfer of q^2=-0.1 GeV^2/c^2 the full solid angle was covered
up to a center-of-mass energy of 4 MeV above threshold. By means of a
Rosenbluth separation the longitudinal threshold s wave multipole and an upper
limit for the transverse threshold s wave multipole could be extracted and
compared to predictions of Heavy Baryon Chiral Perturbation Theory.Comment: 7 pages, 7 figures, latex2
Measurement of Rlt and Atl in the 4He(e,e'p)3H Reaction at pmiss of 130-300 MeV/c
We have measured the 4He(e,e'p)3H reaction at missing momenta of 130-300
MeV/c using the three-spectrometer facility at the Mainz microtron MAMI. Data
were taken in perpendicular kinematics to allow us to determine the response
function Rlt and the asymmetry term Atl. The data are compared to both
relativistic and non-relativistic calculations.Comment: To be published in the European Physical Journal
High-precision Studies of the He(e,ep) Reaction at the Quasielastic Peak
Precision studies of the reaction He(e,ep) using the
three-spectrometer facility at the Mainz microtron MAMI are presented. All data
are for quasielastic kinematics at MeV/c. Absolute cross
sections were measured at three electron kinematics. For the measured missing
momenta range from 10 to 165 MeV/c, no strength is observed for missing
energies higher than 20 MeV. Distorted momentum distributions were extracted
for the two-body breakup and the continuum. The longitudinal and transverse
behavior was studied by measuring the cross section for three photon
polarizations. The longitudinal and transverse nature of the cross sections is
well described by a currently accepted and widely used prescription of the
off-shell electron-nucleon cross-section. The results are compared to modern
three-body calculations and to previous data.Comment: 4 pages, 3 figures. Submitted for publication in Phys. Rev. Let
Parity Violation in Elastic Electron-Proton Scattering and the Proton's Strange Magnetic Form Factor
We report a new measurement of the parity-violating asymmetry in elastic
electron scattering from the proton at backward scattering angles. This
asymmetry is sensitive to the strange magnetic form factor of the proton as
well as electroweak axial radiative corrections. The new measurement of A=-4.92
+- 0.61 +- 0.73 ppm provides a significant constraint on these quantities. The
implications for the strange magnetic form factor are discussed in the context
of theoretical estimates for the axial corrections.Comment: 4 pages, 3 figures, submitted to Physical Review Letters, Sept 199
Neutral-Current Atmospheric Neutrino Flux Measurement Using Neutrino-Proton Elastic Scattering in Super-Kamiokande
Recent results show that atmospheric oscillate with eV and , and that
conversion into is strongly disfavored. The Super-Kamiokande (SK)
collaboration, using a combination of three techniques, reports that their data
favor over . This distinction
is extremely important for both four-neutrino models and cosmology. We propose
that neutrino-proton elastic scattering () in water
\v{C}erenkov detectors can also distinguish between active and sterile
oscillations. This was not previously recognized as a useful channel since only
about 2% of struck protons are above the \v{C}erenkov threshold. Nevertheless,
in the present SK data there should be about 40 identifiable events. We show
that these events have unique particle identification characteristics, point in
the direction of the incoming neutrinos, and correspond to a narrow range of
neutrino energies (1-3 GeV, oscillating near the horizon). This channel will be
particularly important in Hyper-Kamiokande, with times higher rate.
Our results have other important applications. First, for a similarly small
fraction of atmospheric neutrino quasielastic events, the proton is
relativistic. This uniquely selects (not ) events,
useful for understanding matter effects, and allows determination of the
neutrino energy and direction, useful for the dependence of oscillations.
Second, using accelerator neutrinos, both elastic and quasielastic events with
relativistic protons can be seen in the K2K 1-kton near detector and MiniBooNE.Comment: 10 pages RevTeX, 8 figure
- …