534 research outputs found
Single domain magnetic helicity and triangular chirality in structurally enantiopure Ba3NbFe3Si2O14
A novel doubly chiral magnetic order is found out in the structurally chiral
langasite compound BaNbFeSiO. The magnetic moments are
distributed over planar frustrated triangular lattices of triangle units. On
each of these they form the same triangular configuration. This ferro-chiral
arrangement is helically modulated from plane to plane. Unpolarized neutron
scattering on a single crystal associated with spherical neutron polarimetry
proved that a single triangular chirality together with a single helicity is
stabilized in an enantiopure crystal. A mean field analysis allows discerning
the relevance on this selection of a twist in the plane to plane
supersuperexchange paths
Radio Spectral Evolution of an X-ray Poor Impulsive Solar Flare: Implications for Plasma Heating and Electron Acceleration
We present radio and X-ray observations of an impulsive solar flare that was
moderately intense in microwaves, yet showed very meager EUV and X-ray
emission. The flare occurred on 2001 Oct 24 and was well-observed at radio
wavelengths by the Nobeyama Radioheliograph (NoRH), the Nobeyama Radio
Polarimeters (NoRP), and by the Owens Valley Solar Array (OVSA). It was also
observed in EUV and X-ray wavelength bands by the TRACE, GOES, and Yohkoh
satellites. We find that the impulsive onset of the radio emission is
progressively delayed with increasing frequency relative to the onset of hard
X-ray emission. In contrast, the time of flux density maximum is progressively
delayed with decreasing frequency. The decay phase is independent of radio
frequency. The simple source morphology and the excellent spectral coverage at
radio wavelengths allowed us to employ a nonlinear chi-squared minimization
scheme to fit the time series of radio spectra to a source model that accounts
for the observed radio emission in terms of gyrosynchrotron radiation from
MeV-energy electrons in a relatively dense thermal plasma. We discuss plasma
heating and electron acceleration in view of the parametric trends implied by
the model fitting. We suggest that stochastic acceleration likely plays a role
in accelerating the radio-emitting electrons.Comment: 22 pages, 10 figure
Ground states with cluster structures in a frustrated Heisenberg chain
We examine the ground state of a Heisenberg model with arbitrary spin S on a
one-dimensional lattice composed of diamond-shaped units. A unit includes two
types of antiferromagnetic exchange interactions which frustrate each other.
The system undergoes phase changes when the ratio between the
exchange parameters varies. In some phases, strong frustration leads to larger
local structures or clusters of spins than a dimer. We prove for arbitrary S
that there exists a phase with four-spin cluster states, which was previously
found numerically for a special value of in the S=1/2 case. For S=1/2
we show that there are three ground state phases and determine their
boundaries.Comment: 4 pages, uses revtex.sty, 2 figures available on request from
[email protected], to be published in J. Phys.: Cond. Mat
Spin current and magneto-electric effect in non-collinear magnets
A new microscopic mechanism of the magneto-electric (ME) effect based on the
spin supercurrent is theoretically presented for non-collinear magnets. The
close analogy between the superconductors (charge current) and magnets (spin
current) is drawn to derive the distribution of the spin supercurrent and the
resultant electric polarization. Application to the spiral spin structure is
discussed.Comment: 5 pages, 2 figure
Gamma-Ray Spectra & Variability of the Crab Nebula Emission Observed by BATSE
We report ~ 600 days of BATSE earth-occultation observations of the total
gamma-ray (30 keV to 1.7 MeV) emission from the Crab nebula, between 1991 May
24 (TJD 8400) and 1994 October 2 (TJD 9627). Lightcurves from 35-100, 100-200,
200-300, 300-400, 400-700, and 700-1000 keV, show that positive fluxes were
detected by BATSE in each of these six energy bands at significances of
approximately 31, 20, 9.2, 4.5, 2.6, and 1.3 sigma respectively per day. We
also observed significant flux and spectral variations in the 35-300 keV energy
region, with time scales of days to weeks. The spectra below 300 keV, averaged
over typical CGRO viewing periods of 6-13 days, can be well described by a
broken power law with average indices of ~ 2.1 and ~ 2.4 varying around a
spectral break at ~ 100 keV. Above 300 keV, the long-term averaged spectra,
averaged over three 400 d periods (TJD 8400-8800, 8800-9200, and 9200-9628,
respectively) are well represented by the same power law with index of ~ 2.34
up to ~ 670 keV, plus a hard spectral component extending from ~ 670 keV to ~
1.7 MeV, with a spectral index of ~ 1.75. The latter component could be related
to a complex structure observed by COMPTEL in the 0.7-3 MeV range. Above 3 MeV,
the extrapolation of the power-law continuum determined by the low-energy BATSE
spectrum is consistent with fluxes measured by COMPTEL in the 3-25 MeV range,
and by EGRET from 30-50 MeV. We interpret these results as synchrotron emission
produced by the interaction of particles ejected from the pulsar with the field
in different dynamical regions of the nebula system, as observed recently by
HST, XMM-Newton, and Chandra.Comment: To be published in the November 20, 2003, Vol 598 issue of the
Astrophysical Journa
Fermi liquid theory for the Anderson model out of equilibrium
We study low-energy properties of the Anderson impurity under a finite bias
voltage using the perturbation theory in of Yamada and Yosida in the
nonequilibrium Keldysh diagrammatic formalism, and obtain the Ward identities
for the derivative of the self-energy with respect to . The self-energy is
calculated exactly up to terms of order , and , and the
coefficients are defined with respect to the equilibrium ground state. From
these results, the nonlinear response of the current through the impurity has
been deduced up to order .Comment: 8 pages, 1 figur
Broadband microwave burst produced by electron beams
Theoretical and experimental study of fast electron beams attracts a lot of
attention in the astrophysics and laboratory. In the case of solar flares the
problem of reliable beam detection and diagnostics is of exceptional
importance. This paper explores the fact that the electron beams moving oblique
to the magnetic field or along the field with some angular scatter around the
beam propagation direction can generate microwave continuum bursts via
gyrosynchrotron mechanism. The characteristics of the microwave bursts produced
by beams differ from those in case of isotropic or loss-cone distributions,
which suggests a new tool for quantitative diagnostics of the beams in the
solar corona. To demonstrate the potentiality of this tool, we analyze here a
radio burst occurred during an impulsive flare 1B/M6.7 on 10 March 2001 (AR
9368, N27W42). Based on detailed analysis of the spectral, temporal, and
spatial relationships, we obtained firm evidence that the microwave continuum
burst is produced by electron beams. For the first time we developed and
applied a new forward fitting algorithm based on exact gyrosynchrotron formulae
and employing both the total power and polarization measurements to solve the
inverse problem of the beam diagnostics. We found that the burst is generated
by a oblique beam in a region of reasonably strong magnetic field ( G) and the burst is observed at a quasi-transverse viewing angle. We
found that the life time of the emitting electrons in the radio source is
relatively short, s, consistent with a single reflection
of the electrons from a magnetic mirror at the foot point with the stronger
magnetic field. We discuss the implications of these findings for the electron
acceleration in flares and for beam diagnostics.Comment: Astrophysical Journal, accepted: 26 pages, 8 figure
The square-lattice spiral magnet Ba_2CuGe_2O_7 in an in-plane magnetic field
The magnetic structure of Ba_2CuGe_2O_7 is investigated by neutron
diffraction in magnetic fields applied along several directions in the
plane of the crystal. In relatively weak fields, ~T, the
propagation vector of the spin-spiral rotates to form a finite angle with the
field direction. This angle depends on the orientation of itself. The
rotation of the propagation vector is accompanied by a re-orientation of the
plane of spin rotation in the spiral. The observed behaviour is well described
by a continuous-limit form of a free energy functional that includes exchange
and Dzyaloshinskii-Moriya interactions, as well as the Zeeman energy and an
empirical anisotropy term.Comment: 7 pages, 6 figure
Fermi-liquid theory for a conductance through an interacting region attached to noninteracting leads
We study the relation between the dc conductance and the transmission through
an interacting region based on the Kubo formalism using the perturbation
analysis in the Coulomb interaction developed by Yamada-Yosida and Shiba. We
find that the contributions of the vertex correction to the dc conductance
disappear at T=0 if the currents are measured in the noninteracting leads.
Consequently, the dc conductance is written in a Landauer-type form using the
transmission coefficient for single-particle-like excitation at the Fermi
energy. The results are generalized to a system with a number of scattering
channels, and may be regarded as an extension of the relation derived by
Fisher-Lee.Comment: text is not changed, 6 PS figures were replaced by 6 EPS figures in
order to prevent the control-D problem of the PS file
- …