534 research outputs found

    Single domain magnetic helicity and triangular chirality in structurally enantiopure Ba3NbFe3Si2O14

    Get PDF
    A novel doubly chiral magnetic order is found out in the structurally chiral langasite compound Ba3_3NbFe3_3Si2_2O14_{14}. The magnetic moments are distributed over planar frustrated triangular lattices of triangle units. On each of these they form the same triangular configuration. This ferro-chiral arrangement is helically modulated from plane to plane. Unpolarized neutron scattering on a single crystal associated with spherical neutron polarimetry proved that a single triangular chirality together with a single helicity is stabilized in an enantiopure crystal. A mean field analysis allows discerning the relevance on this selection of a twist in the plane to plane supersuperexchange paths

    Radio Spectral Evolution of an X-ray Poor Impulsive Solar Flare: Implications for Plasma Heating and Electron Acceleration

    Full text link
    We present radio and X-ray observations of an impulsive solar flare that was moderately intense in microwaves, yet showed very meager EUV and X-ray emission. The flare occurred on 2001 Oct 24 and was well-observed at radio wavelengths by the Nobeyama Radioheliograph (NoRH), the Nobeyama Radio Polarimeters (NoRP), and by the Owens Valley Solar Array (OVSA). It was also observed in EUV and X-ray wavelength bands by the TRACE, GOES, and Yohkoh satellites. We find that the impulsive onset of the radio emission is progressively delayed with increasing frequency relative to the onset of hard X-ray emission. In contrast, the time of flux density maximum is progressively delayed with decreasing frequency. The decay phase is independent of radio frequency. The simple source morphology and the excellent spectral coverage at radio wavelengths allowed us to employ a nonlinear chi-squared minimization scheme to fit the time series of radio spectra to a source model that accounts for the observed radio emission in terms of gyrosynchrotron radiation from MeV-energy electrons in a relatively dense thermal plasma. We discuss plasma heating and electron acceleration in view of the parametric trends implied by the model fitting. We suggest that stochastic acceleration likely plays a role in accelerating the radio-emitting electrons.Comment: 22 pages, 10 figure

    Ground states with cluster structures in a frustrated Heisenberg chain

    Full text link
    We examine the ground state of a Heisenberg model with arbitrary spin S on a one-dimensional lattice composed of diamond-shaped units. A unit includes two types of antiferromagnetic exchange interactions which frustrate each other. The system undergoes phase changes when the ratio λ\lambda between the exchange parameters varies. In some phases, strong frustration leads to larger local structures or clusters of spins than a dimer. We prove for arbitrary S that there exists a phase with four-spin cluster states, which was previously found numerically for a special value of λ\lambda in the S=1/2 case. For S=1/2 we show that there are three ground state phases and determine their boundaries.Comment: 4 pages, uses revtex.sty, 2 figures available on request from [email protected], to be published in J. Phys.: Cond. Mat

    Spin current and magneto-electric effect in non-collinear magnets

    Full text link
    A new microscopic mechanism of the magneto-electric (ME) effect based on the spin supercurrent is theoretically presented for non-collinear magnets. The close analogy between the superconductors (charge current) and magnets (spin current) is drawn to derive the distribution of the spin supercurrent and the resultant electric polarization. Application to the spiral spin structure is discussed.Comment: 5 pages, 2 figure

    Gamma-Ray Spectra & Variability of the Crab Nebula Emission Observed by BATSE

    Full text link
    We report ~ 600 days of BATSE earth-occultation observations of the total gamma-ray (30 keV to 1.7 MeV) emission from the Crab nebula, between 1991 May 24 (TJD 8400) and 1994 October 2 (TJD 9627). Lightcurves from 35-100, 100-200, 200-300, 300-400, 400-700, and 700-1000 keV, show that positive fluxes were detected by BATSE in each of these six energy bands at significances of approximately 31, 20, 9.2, 4.5, 2.6, and 1.3 sigma respectively per day. We also observed significant flux and spectral variations in the 35-300 keV energy region, with time scales of days to weeks. The spectra below 300 keV, averaged over typical CGRO viewing periods of 6-13 days, can be well described by a broken power law with average indices of ~ 2.1 and ~ 2.4 varying around a spectral break at ~ 100 keV. Above 300 keV, the long-term averaged spectra, averaged over three 400 d periods (TJD 8400-8800, 8800-9200, and 9200-9628, respectively) are well represented by the same power law with index of ~ 2.34 up to ~ 670 keV, plus a hard spectral component extending from ~ 670 keV to ~ 1.7 MeV, with a spectral index of ~ 1.75. The latter component could be related to a complex structure observed by COMPTEL in the 0.7-3 MeV range. Above 3 MeV, the extrapolation of the power-law continuum determined by the low-energy BATSE spectrum is consistent with fluxes measured by COMPTEL in the 3-25 MeV range, and by EGRET from 30-50 MeV. We interpret these results as synchrotron emission produced by the interaction of particles ejected from the pulsar with the field in different dynamical regions of the nebula system, as observed recently by HST, XMM-Newton, and Chandra.Comment: To be published in the November 20, 2003, Vol 598 issue of the Astrophysical Journa

    Fermi liquid theory for the Anderson model out of equilibrium

    Full text link
    We study low-energy properties of the Anderson impurity under a finite bias voltage VV using the perturbation theory in UU of Yamada and Yosida in the nonequilibrium Keldysh diagrammatic formalism, and obtain the Ward identities for the derivative of the self-energy with respect to VV. The self-energy is calculated exactly up to terms of order ω2\omega^2, T2T^2 and V2V^2, and the coefficients are defined with respect to the equilibrium ground state. From these results, the nonlinear response of the current through the impurity has been deduced up to order V3V^3.Comment: 8 pages, 1 figur

    Broadband microwave burst produced by electron beams

    Full text link
    Theoretical and experimental study of fast electron beams attracts a lot of attention in the astrophysics and laboratory. In the case of solar flares the problem of reliable beam detection and diagnostics is of exceptional importance. This paper explores the fact that the electron beams moving oblique to the magnetic field or along the field with some angular scatter around the beam propagation direction can generate microwave continuum bursts via gyrosynchrotron mechanism. The characteristics of the microwave bursts produced by beams differ from those in case of isotropic or loss-cone distributions, which suggests a new tool for quantitative diagnostics of the beams in the solar corona. To demonstrate the potentiality of this tool, we analyze here a radio burst occurred during an impulsive flare 1B/M6.7 on 10 March 2001 (AR 9368, N27W42). Based on detailed analysis of the spectral, temporal, and spatial relationships, we obtained firm evidence that the microwave continuum burst is produced by electron beams. For the first time we developed and applied a new forward fitting algorithm based on exact gyrosynchrotron formulae and employing both the total power and polarization measurements to solve the inverse problem of the beam diagnostics. We found that the burst is generated by a oblique beam in a region of reasonably strong magnetic field (200300\sim 200-300 G) and the burst is observed at a quasi-transverse viewing angle. We found that the life time of the emitting electrons in the radio source is relatively short, τl0.5\tau_l \approx 0.5 s, consistent with a single reflection of the electrons from a magnetic mirror at the foot point with the stronger magnetic field. We discuss the implications of these findings for the electron acceleration in flares and for beam diagnostics.Comment: Astrophysical Journal, accepted: 26 pages, 8 figure

    The square-lattice spiral magnet Ba_2CuGe_2O_7 in an in-plane magnetic field

    Full text link
    The magnetic structure of Ba_2CuGe_2O_7 is investigated by neutron diffraction in magnetic fields applied along several directions in the (a,b)(a,b) plane of the crystal. In relatively weak fields, H0.5H\lesssim 0.5~T, the propagation vector of the spin-spiral rotates to form a finite angle with the field direction. This angle depends on the orientation of HH itself. The rotation of the propagation vector is accompanied by a re-orientation of the plane of spin rotation in the spiral. The observed behaviour is well described by a continuous-limit form of a free energy functional that includes exchange and Dzyaloshinskii-Moriya interactions, as well as the Zeeman energy and an empirical anisotropy term.Comment: 7 pages, 6 figure

    Fermi-liquid theory for a conductance through an interacting region attached to noninteracting leads

    Full text link
    We study the relation between the dc conductance and the transmission through an interacting region based on the Kubo formalism using the perturbation analysis in the Coulomb interaction developed by Yamada-Yosida and Shiba. We find that the contributions of the vertex correction to the dc conductance disappear at T=0 if the currents are measured in the noninteracting leads. Consequently, the dc conductance is written in a Landauer-type form using the transmission coefficient for single-particle-like excitation at the Fermi energy. The results are generalized to a system with a number of scattering channels, and may be regarded as an extension of the relation derived by Fisher-Lee.Comment: text is not changed, 6 PS figures were replaced by 6 EPS figures in order to prevent the control-D problem of the PS file
    corecore