15 research outputs found

    Plant hormone transporters: what we know and what we would like to know

    Full text link

    Plant K(in) and K(out) channels: approaching the trait of opposite rectification by analyzing more than 250 KAT1-SKOR chimeras.

    No full text
    Members of the Shaker-like plant K(+) channel family share a common structure, but are highly diverse in their function: they behave as either hyperpolarization-activated inward-rectifying (K(in)) channels, or leak-like (K(weak)) channels, or depolarization-activated outward-rectifying (K(out)) channels. Here we created 256 chimeras between the K(in) channel KAT1 and the K(out) channel SKOR. The chimeras were screened in a potassium-uptake deficient yeast strain to identify those, which mediate potassium inward currents, i.e., which are functionally equivalent to KAT1. This strategy allowed us to identify three chimeras which differ from KAT1 in three parts of the polypeptide: the cytosolic N-terminus, the cytosolic C-terminus, and the putative voltage-sensor S4. Additionally, mutations in the K(out) channel SKOR were generated in order to localize molecular entities underlying its depolarization activation. The triple mutant SKOR-D312N-M313L-I314G, carrying amino-acid changes in the S6 segment, was identified as a channel which did not display any rectification in the tested voltage-range

    indCAPS: A tool for designing screening primers for CRISPR/Cas9 mutagenesis events

    Get PDF
    Genetic manipulation of organisms using CRISPR/Cas9 technology generally produces small insertions/deletions (indels) that can be difficult to detect. Here, we describe a technique to easily and rapidly identify such indels. Sequence-identified mutations that alter a restriction enzyme recognition site can be readily distinguished from wild-type alleles using a cleaved amplified polymorphic sequence (CAPS) technique. If a restriction site is created or altered by the mutation such that only one allele contains the restriction site, a polymerase chain reaction (PCR) followed by a restriction digest can be used to distinguish the two alleles. However, in the case of most CRISPR-induced alleles, no such restriction sites are present in the target sequences. In this case, a derived CAPS (dCAPS) approach can be used in which mismatches are purposefully introduced in the oligonucleotide primers to create a restriction site in one, but not both, of the amplified templates. Web-based tools exist to aid dCAPS primer design, but when supplied sequences that include indels, the current tools often fail to suggest appropriate primers. Here, we report the development of a Python-based, species-agnostic web tool, called indCAPS, suitable for the design of PCR primers used in dCAPS assays that is compatible with indels. This tool should have wide utility for screening editing events following CRISPR/Cas9 mutagenesis as well as for identifying specific editing events in a pool of CRISPR-mediated mutagenesis events. This tool was field-tested in a CRISPR mutagenesis experiment targeting a cytokinin receptor (AHK3) in Arabidopsis thaliana. The tool suggested primers that successfully distinguished between wild-type and edited alleles of a target locus and facilitated the isolation of two novel ahk3 null alleles. Users can access indCAPS and design PCR primers to employ dCAPS to identify CRISPR/Cas9 alleles at http://indcaps.kieber.cloudapps.unc.edu/

    The landscape of cytokinin binding by a plant nodulin

    No full text
    Nodulation is an extraordinary symbiotic interaction between leguminous plants and nitrogen-fixing bacteria (rhizobia) that assimilate atmospheric nitrogen (in root nodules) and convert it into compounds suitable for the plant host. A class of plant hormones called cytokinins are involved in the nodulation process. In the model legume Medicago truncatula, nodulin 13 (MtN13), which belongs to the pathogenesis-related proteins of class 10 (PR-10), is expressed in the outer cortex of the nodules. In general, PR-10 proteins are small and monomeric and have a characteristic fold with an internal hydrophobic cavity formed between a seven-stranded antiparallel β-sheet and a C-terminal α-helix. Previously, some PR-10 proteins not related to nodulation were found to bind cytokinins such as trans-zeatin. Here, four crystal structures of the MtN13 protein are reported in complexes with several cytokinins, namely trans-zeatin, N6^6-isopentenyladenine, kinetin and N6^6-benzyladenine. All four phytohormones are bound in the hydrophobic cavity in the same manner and have excellent definition in the electron-density maps. The binding of the cytokinins appears to be strong and specific and is reinforced by several hydrogen bonds. Although the binding stoichiometry is 1:1, the complex is actually dimeric, with a cytokinin molecule bound in each subunit. The ligand-binding site in each cavity is formed with the participation of a loop element from the other subunit, which plugs the only entrance to the cavity. Interestingly, a homodimer of MtN13 is also formed in solution, as confirmed by small-angle X-ray scattering (SAXS)

    miRNA863-3p sequentially targets negative immune regulator ARLPKs and positive regulator SERRATE upon bacterial infection

    No full text
    Plant small RNAs play important roles in gene regulation during pathogen infection. Here we show that miR863-3p is induced by the bacterial pathogen Pseudomonas syringae carrying various effectors. Early during infection, miR863-3p silences two negative regulators of plant defence, atypical receptor-like pseudokinase1 (ARLPK1) and ARLPK2, both lacking extracellular domains and kinase activity, through mRNA degradation to promote immunity. ARLPK1 associates with, and may function through another negative immune regulator ARLPK1-interacting receptor-like kinase 1 (AKIK1), an active kinase with an extracellular domain. Later during infection, miR863-3p silences SERRATE, which is essential for miRNA accumulation and positively regulates defence, through translational inhibition. This results in decreased miR863-3p levels, thus forming a negative feedback loop to attenuate immune responses after successful defence. This is an example of a miRNA that sequentially targets both negative and positive regulators of immunity through two modes of action to fine-tune the timing and amplitude of defence responses
    corecore