12 research outputs found
A mathematical model of tumour & blood pHe regulation: The HCO-3/CO2 buffering system
Malignant tumours are characterised by a low, acidic extracellular pH (pHe) which facilitates invasion and metastasis. Previous research has proposed the potential benefits of manipulating systemic pHe, and recent experiments have highlighted the potential for buffer therapy to raise tumour pHe, prevent metastases, and prolong survival in laboratory mice. To examine the physiological regulation of tumour buffering and investigate how perturbations of the buffering system (via metabolic/respiratory disorders or changes in parameters) can alter tumour and blood pHe, we develop a simple compartmentalised ordinary differential equation model of pHe regulation by the View the MathML source buffering system. An approximate analytical solution is constructed and used to carry out a sensitivity analysis, where we identify key parameters that regulate tumour pHe in both humans and mice. From this analysis, we suggest promising alternative and combination therapies, and identify specific patient groups which may show an enhanced response to buffer therapy. In addition, numerical simulations are performed, validating the model against well-known metabolic/respiratory disorders and predicting how these disorders could change tumour pHe
Compensatory regrowth of the mouse bladder after partial cystectomy.
Cystectomy is the removal of all or part of the urinary bladder. It has been observed that there is significant regrowth of the bladder after partial cystectomy and this has been proposed to be through regeneration of the organ. Regrowth of tissue in mammals has been proposed to involve compensatory mechanisms that share many characteristics of true regeneration, like the growth of specialized structures such as blood vessels or nerves. However, the overall structure of the normal organ is not achieved. Here we tested if bladder growth after subtotal cystectomy (STC, removal of 50% of the bladder) was compensatory or regenerative. To do this we subjected adult female mouse bladders to STC and assessed regrowth using several established cellular parameters including histological, gene expression, cytokine accumulation and cell proliferation studies. Bladder function was analyzed using cystometry and the voiding stain on paper (VSOP) technique. We found that STC bladders were able to increase their ability to hold urine with the majority of volume restoration occurring within the first two weeks. Regenerating bladders had thinner walls with less mean muscle thickness, and they showed increased collagen deposition at the incision as well as throughout the bladder wall suggesting that fibrosis was occurring. Cell populations differed in their response to injury with urothelial regeneration complete by day 7, but stromal and detrusor muscle still incomplete after 8wks. Cells incorporated EdU when administered at the time of surgery and tracing of EdU positive cells over time indicated that many newborn cells originate at the incision and move mediolaterally. Basal urothelial cells and bladder mesenchymal stem cells but not smooth muscle cells significantly incorporated EdU after STC. Since anti-inflammatory cytokines play a role in regeneration, we analyzed expressed cytokines and found that no anti-inflammatory cytokines were present in the bladder 1wk after STC. Our findings suggest that bladder regrowth after cystectomy is compensatory and functions to increase the volume that the bladder can hold. This finding sets the stage for understanding how the bladder responds to cystectomy and how this can be improved in patients after suffering bladder injury
Effect of relative humidity on the electrostatic charge properties of dry powder inhaler aerosols
Purpose. At present, there is no published data examining the effect of relative humidity on the electrostatic charges of dry powder inhaler aerosols. The charging behaviour of two commercial products, Pulmicort® and Bricanyl® Turbuhalers®, were investigated using an electrical low pressure impactor (ELPI). Methods. ELPI was successfully modified to disperse the aerosols at 60 l/min. Four doses from each new inhaler were sampled at 15, 40, 65, and 90% RH. Particles deposited on the impactor stages according to their aerodynamic diameters and their charges were measured simultaneously by the electrometers. The drug in each size fraction was quantified using HPLC. Results. Both products generated bipolar charges. The charging behaviour of the two types of inhaler showed different humidity dependence although the mass output was not significantly affected. The absolute specific charge of budesonide fine particles from Pulmicort® was the lowest at 40% RH but increased at lower and higher RHs. In contrast, the terbutaline sulfate fine particles from Bricanyl® followed the expected trend of charge reduction with increasing RH. Conclusions. The distinct trends of charging of aerosols from Pulmicort® and Bricanyl® Turbuhalers® was explained by differences in hygroscopicity and other physicochemical factors between the two drugs. © 2007 Springer Science+Business Media, LLC.link_to_subscribed_fulltex