238 research outputs found

    Similarity of fluctuations in correlated systems: The case of seismicity

    Full text link
    We report a similarity of fluctuations in equilibrium critical phenomena and non-equilibrium systems, which is based on the concept of natural time. The world-wide seismicity as well as that of San Andreas fault system and Japan are analyzed. An order parameter is chosen and its fluctuations relative to the standard deviation of the distribution are studied. We find that the scaled distributions fall on the same curve, which interestingly exhibits, over four orders of magnitude, features similar to those in several equilibrium critical phenomena (e.g., 2D Ising model) as well as in non-equilibrium systems (e.g., 3D turbulent flow).Comment: 5 pages, 9 figure

    Entropy of seismic electric signals: Analysis in natural time under time-reversal

    Full text link
    Electric signals have been recently recorded at the Earth's surface with amplitudes appreciably larger than those hitherto reported. Their entropy in natural time is smaller than that, SuS_u, of a ``uniform'' distribution. The same holds for their entropy upon time-reversal. This behavior, as supported by numerical simulations in fBm time series and in an on-off intermittency model, stems from infinitely ranged long range temporal correlations and hence these signals are probably Seismic Electric Signals (critical dynamics). The entropy fluctuations are found to increase upon approaching bursting, which reminds the behavior identifying sudden cardiac death individuals when analysing their electrocardiograms.Comment: 7 pages, 4 figures, copy of the revised version submitted to Physical Review Letters on June 29,200

    Estimating future air-quality due to climate change: the Athens case study

    Get PDF
    The aim of this study is to investigate the development of an empirical-statistical model in order to examine the potential impact of increasing future temperatures on ozone exceedance days in the Greater Athens Area. It is based on the concept that temperature is a capable predictor for the ozone concentrations and that in a future climate change world, the likelihood of ozone pollution episodes may increase

    Statistical estimations of the number of future ozone exceedances due to climate change in Europe

    Get PDF
    A statistical model to examine the potential impact of increasing future temperatures due to climate change on ozone exceedances (days with daily maximum 8 h average ≥ 60 ppb) is developed for Europe. We employ gridded observed daily maximum temperatures and hourly ozone observations from nonurban stations across Europe, together with daily maximum temperatures for 2021–2050 and 2071–2100 from three regional climate models, based on the Intergovernmental Panel on Climate Change Special Reports on Emissions Scenarios A1B scenario. A rotated principal components analysis is applied to the ozone stations yielding five principal components, which divide the study domain in five subregions. The historical ozone-temperature relationship is examined and then used to provide estimates of future ozone exceedance days under current emissions and under the assumption that this relationship will retain its main characteristics. Results suggest that increases in the upper temperature percentiles lead to statistically significant increases (95% statistical significance level) of the ozone exceedances for both future periods. The greatest average increases depending on the particular regional climate model range from 5 to 12 extra ozone days/yr for 2021–2050 and from 16 to 25 for 2071–2100, in southeast Europe. The lowest average increases range from 0 to 2 extra ozone days/yr for 2021–2050 and from 2 to 4 for 2071–2100 and are seen in northwest Europe. The simulations with the dynamical Goddard Institute of Space Studies/GEOS-CHEM climate chemistry modeling system shows decreases instead of increases in eastern Europe, higher increases in northwest Europe, whereas for the other subregions similar results to the statistical model are obtained

    Comment on "Effects of Thickness on the Spin Susceptibility of the Two Dimensional Electron Gas"

    Full text link
    A comment on a recent paper (PRL {\bf 94}, 226405 (2005)) by S. De Palo, M. Botti, S. Moroni, and Gaetano Senatore

    Assessment of the Impacts of Climate Change on European Ozone Levels

    Get PDF
    The objective of this study is to investigate the potential impact of future climate change on ozone air quality in Europe. To provide a full assessment, simulations with the global chemical transport model GEOS-CHEM driven by the NASA Goddard Institute for Space Studies general circulation model (NASA/GISS GCM) are conducted. To isolate the effects from changes in climate and anthropogenic emissions four types of simulations are performed: (1) present-day climate and emissions (2) future climate following the IPCC Special Report on Emission Scenarios (SRES) A1B scenario and present-day anthropogenic emissions of ozone precursors (3) present-day climate and future emissions and (4) future climate and future emissions. Results indicate that climate change impact on its own leads to an increase of less than 3 ppb in western and central Europe whereas decreases are evident for the rest of the areas with the highest (about 2.5 ppb) in southeastern Europe (Italy, Greece). Increases are attributed to the increases of isoprene biogenic emissions due to increasing temperatures whereas decreases are associated with the increase of water vapor over sea which tends to decrease the lifetime of ozone as well as the increased wind speeds in the 2050 climate. When future emissions are implemented in the future climate simulations, the greatest increases are seen in the southwest and southeast Mediterranean (about 16 ppb) due to the increased isoprene biogenic emissions under higher levels of NOx in the model. Decreases up to 2 ppb of ozone are shown for France, Switzerland, Northern Italy and northern Europe

    Identifying the Occurrence Time of the Destructive KahramanmaraĹź-Gazientep Earthquake of Magnitude M7.8 in Turkey on 6 February 2023

    Get PDF
    Here, we employ natural time analysis of seismicity together with non-extensive statistical mechanics aiming at shortening the occurrence time window of the Kahramanmaraş-Gazientep M7.8 earthquake. The results obtained are in the positive direction pointing to the fact that after 3 February 2023 at 11:05:58 UTC, a strong earthquake was imminent. Natural time analysis also reveals a minimum fluctuation of the order parameter of seismicity almost three and a half months before the M7.8 earthquake, pointing to the initiation of seismic electrical activity. Moreover, before this earthquake occurrence, the detrended fluctuation analysis of the earthquake magnitude time-series reveals random behavior. Finally, when applying earthquake nowcasting, we find average earthquake potential score values which are compatible with those previously observed before strong (M≥7.1) earthquakes. The results obtained may improve our understanding of the physics of crustal phenomena that lead to strong earthquakes

    On the corrosion and soiling effects on materials by air pollution in Athens, Greece

    Get PDF
    In the frame of the European project, entitled MULTI-ASSESS, specimens of structural metals, glass, stone and concrete materials were exposed to air pollution at a station, which was installed for this purpose on a building, located in the centre of Athens. The main purpose of this project was to determine the corrosion and soiling effects of air pollution on materials. A set of the specimens was exposed in a position that was sheltered from rain and partly from wind, and another set was exposed in unsheltered positions on the roof of the above said building. In addition, other specimens were exposed at different heights on the same building, in order to investigate for the first time the corrosion and soiling effects on various materials as a function of height. For the determination of these effects, chemical analysis of the specimens was performed and basic parameters as the weight change, the layer thickness and the optical properties were calculated. Finally, the results obtained are discussed and their plausible interpretation is attempted
    • …
    corecore