8 research outputs found

    Collective dynamics of self-propelled particles with variable speed

    No full text
    Understanding the organization of collective motion in biological systems is an ongoing challenge. In this Paper we consider a minimal model of self-propelled particles with variable speed. Inspired by experimental data from schooling fish, we introduce a power-law dependency of the speed of each particle on the degree of polarization order in its neighborhood. We derive analytically a coarse-grained continuous approximation for this model and find that, while the variable speed rule does not change the details of the ordering transition leading to collective motion, it induces an inverse power-law correlation between the speed or the local polarization order and the local density. Using numerical simulations, we verify the range of validity of this continuous description and explore regimes beyond it. We discover, in disordered states close to the transition, a phase-segregated regime where most particles cluster into almost static groups surrounded by isolated high-speed particles. We argue that the mechanism responsible for this regime could be present in a wide range of collective motion dynamics.publishe

    Inferring the structure and dynamics of interactions in schooling fish

    No full text
    Determining individual-level interactions that govern highly coordinated motion in animal groups or cellular aggregates has been a long-standing challenge, central to understanding the mechanisms and evolution of collective behavior. Numerous models have been proposed, many of which display realistic-looking dynamics, but nonetheless rely on untested assumptions about how individuals integrate information to guide movement. Here we infer behavioral rules directly from experimental data. We begin by analyzing trajectories of golden shiners (Notemigonus crysoleucas) swimming in two-fish and three-fish shoals to map the mean effective forces as a function of fish positions and velocities. Speeding and turning responses are dynamically modulated and clearly delineated. Speed regulation is a dominant component of how fish interact, and changes in speed are transmitted to those both behind and ahead. Alignment emerges from attraction and repulsion, and fish tend to copy directional changes made by those ahead. We find no evidence for explicit matching of body orientation. By comparing data from two-fish and three-fish shoals, we challenge the standard assumption, ubiquitous in physics-inspired models of collective behavior, that individual motion results from averaging responses to each neighbor considered separately; three-body interactions make a substantial contribution to fish dynamics. However, pairwise interactions qualitatively capture the correct spatial interaction structure in small groups, and this structure persists in larger groups of 10 and 30 fish. The interactions revealed here may help account for the rapid changes in speed and direction that enable real animal groups to stay cohesive and amplify important social information
    corecore