6,871 research outputs found
Instrumentation in wind tunnels
Requirements in designing instrumentation systems and measurements of various physical quantities in wind tunnels are surveyed. Emphasis is given to sensors used for measuring pressure, temperature, and angle, and the measurements of air turbulence and boundary layers. Instrumentation in wind tunnels require accuracy, fast response, diversity and operational simplicity. Measurements of force, pressure, attitude angle, free flow, pressure distribution, and temperature are illustrated by a table, and a block diagram. The LDV (laser Doppler velocimeter) method for measuring air turbulence and flow velocity and measurement of skin friction and flow fields using laser holograms are discussed. The future potential of these techniques is studied
A survey of the three-dimensional high Reynolds number transonic wind tunnel
The facilities for aerodynamic testing of airplane models at transonic speeds and high Reynolds numbers are surveyed. The need for high Reynolds number testing is reviewed, using some experimental results. Some approaches to high Reynolds number testing such as the cryogenic wind tunnel, the induction driven wind tunnel, the Ludwieg tube, the Evans clean tunnel and the hydraulic driven wind tunnel are described. The level of development of high Reynolds number testing facilities in Japan is discussed
Fulde-Ferrell-Larkin-Ovchinnikov state in a perpendicular field of quasi two-dimensional CeCoIn5
A Fulde-Ferrell-Larkin-Ovchinnkov (FFLO) state was previously reported in the
quasi-2D heavy fermion CeCoIn5 when a magnetic field was applied parallel to
the ab-plane. Here, we conduct 115^In NMR studies of this material in a
PERPENDICULAR field, and provide strong evidence for FFLO in this case as well.
Although the topology of the phase transition lines in the H-T phase diagram is
identical for both configurations, there are several remarkable differences
between them. Compared to H//ab, the FFLO region for H perpendicular to the
ab-plane shows a sizable decrease, and the critical field separating the FFLO
and non-FFLO superconducting states almost ceases to have a temperature
dependence. Moreover, directing H perpendicular to the ab-plane results in a
notable change in the quasiparticle excitation spectrum within the planar node
associated with the FFLO transition.Comment: 5 pages, 3 figure
Solvated dissipative electro-elastic network model of hydrated proteins
Elastic netwok models coarse grain proteins into a network of residue beads
connected by springs. We add dissipative dynamics to this mechanical system by
applying overdamped Langevin equations of motion to normal-mode vibrations of
the network. In addition, the network is made heterogeneous and softened at the
protein surface by accounting for hydration of the ionized residues. Solvation
changes the network Hessian in two ways. Diagonal solvation terms soften the
spring constants and off-diagonal dipole-dipole terms correlate displacements
of the ionized residues. The model is used to formulate the response functions
of the electrostatic potential and electric field appearing in theories of
redox reactions and spectroscopy. We also formulate the dielectric response of
the protein and find that solvation of the surface ionized residues leads to a
slow relaxation peak in the dielectric loss spectrum, about two orders of
magnitude slower than the main peak of protein relaxation. Finally, the
solvated network is used to formulate the allosteric response of the protein to
ion binding. The global thermodynamics of ion binding is not strongly affected
by the network solvation, but it dramatically enhances conformational changes
in response to placing a charge at the active site of the protein
An energy scale directly related to superconductivity in the high- cuprate superconductors: Universality from the Fermi arc picture
We have performed a temperature dependent angle-resolved photoemission
spectroscopy (ARPES) study of the tri-layer high- cuprate superconductor
(HTSC) BiSrCaCuO (Bi2223), and have shown that
the \textquotedblleft effective\textquotedblright superconducting (SC) gap
defined at the end point of the Fermi arc and the (=
110 K) approximately satisfies the weak-coupling BCS-relationship
2 = 4.3. Combining this result with previous
ARPES results on single- and double-layer cuprates, we show that the
relationship between 2 = 4.3 holds for various
HTSCs. Furthermore, at , the quasi-patricle width at the end
point of the Fermi arc is found to coincide with , consistent
with the context of Planckian dissipation.Comment: 5 pages, 4 figure
Demonstration of RedirectedDoors: Manipulating User\u27s Orientation while Opening Doors in Virtual Reality
We present an installation demonstrating the applicability of RedirectedDoors, a redirection technique that occasionally manipulates the user\u27s orientation during door-opening motions. In this demo, the player explores an indoor virtual environment containing doors while wearing a head-mounted display (HMD), and their orientation in reality is manipulated as a function of the door\u27s opening angle. In addition, when the player opens the door by pushing or pulling the doorknob in virtual reality, the corresponding passive haptic feedback is provided by the self-actuated doorknob-type prop. When reaching the goal, they can see the manipulation results by comparing their virtual position with a real landmark position. Consequently, this demo both makes the player\u27s experience more realistic and presents the virtual environment in a comparatively small physical space
- …