252 research outputs found

    Nuclear rocket shielding methods, modification, updating, and input data preparation. Volume 4 - One-dimensional, discrete ordinates transport technique Final progress report

    Get PDF
    One dimensional, discrete ordinates transport technique for use with nuclear rocket shielding methods, modification, updating, and data input preparation - Vol.

    Nuclear rocket shielding methods, modification, updating, and input data preparation. Volume 2 - Compilation of neutron and photon cross section data Final progress report

    Get PDF
    Compilation of neutron and photon cross section data using computer programs developed for nuclear rocket shielding methods, modification, updating, and input data preparation - Vol.

    Synthesis of calculational methods for the design and analysis of radiation shields for nuclear rocket systems. Volume 2 - Analysis of radiation measurements in a nuclear rocket propellant tank mockup using simulated liquid hydrogen

    Get PDF
    Calculational methods for nuclear rocket radiation shield design - analysis of radiation measurements in nuclear rocket propellant tank mockup using simulated liquid hydroge

    Nuclear rocket shielding methods, modification, updating, and input data preparation. Volume 5 - Two-dimensional, discrete ordinates transport technique Final progress report

    Get PDF
    Two dimensional, discrete ordinates transport technique for use with nuclear rocket shielding methods, modification, updating, and data input preparation - Vol.

    Febrile seizures in the developing brain result in persistent modification of neuronal excitability in limbic circuits.

    Get PDF
    Febrile (fever-induced) seizures affect 3-5% of infants and young children. Despite the high incidence of febrile seizures, their contribution to the development of epilepsy later in life has remained controversial. Combining a new rat model of complex febrile seizures and patch clamp techniques, we determined that hyperthermia-induced seizures in the immature rat cause a selective presynaptic increase in inhibitory synaptic transmission in the hippocampus that lasts into adulthood. The long-lasting nature of these potent alterations in synaptic communication after febrile seizures does not support the prevalent view of the 'benign' nature of early-life febrile convulsions

    Synthesis of calculational methods for design and analysis of radiation shields for nuclear rocket systems

    Get PDF
    Eight computer programs make up a nine volume synthesis containing two design methods for nuclear rocket radiation shields. The first design method is appropriate for parametric and preliminary studies, while the second accomplishes the verification of a final nuclear rocket reactor design

    Nuclear rocket shielding methods, modification, updating, and input data preparation. Volume 1 - Synopsis of methods and results of analysis Final progress report

    Get PDF
    Analysis of data systems and computer programs for nuclear rocket shielding methods, modification, updating, and data input preparation - Vol.

    The pro-convulsant actions of corticotropin-releasing hormone in the hippocampus of infant rats.

    Get PDF
    Whole-cell patch-clamp and extracellular field recordings were obtained from 450-microns-thick brain slices of infant rats (10-13 days postnatal) to determine the actions of corticotropin-releasing hormone on glutamate- and GABA-mediated synaptic transmission in the hippocampus. Synthetic corticotropin-releasing hormone (0.15 microM) reversibly increased the excitability of hippocampal pyramidal cells, as determined by the increase in the amplitude of the CA1 population spikes evoked by stimulation of the Schaffer collateral pathway. This increase in population spike amplitude could be prevented by the corticotropin-releasing hormone receptor antagonist alpha-helical (9-41)-corticotropin-releasing hormone (10 microM). Whole-cell patch-clamp recordings revealed that, in the presence of blockers of fast excitatory and inhibitory synaptic transmission, corticotropin-releasing hormone caused only a small (1-2 mV) depolarization of the resting membrane potential in CA3 pyramidal cells, and it did not significantly alter the input resistance. However, corticotropin-releasing hormone, in addition to decreasing the slow afterhyperpolarization, caused an increase in the number of action potentials per burst evoked by depolarizing current pulses. Corticotropin-releasing hormone did not significantly change the frequency, amplitude or kinetics of miniature excitatory postsynaptic currents. However, it increased the frequency of the spontaneous excitatory postsynaptic currents in CA3 pyramidal cells, without altering their amplitude and single exponential rise and decay time constants. Corticotropin-releasing hormone did not change the amplitude of the pharmacologically isolated (i.e. recorded in the presence of GABAA receptor antagonist bicuculline) excitatory postsynaptic currents in CA3 and CA1 pyramidal cells evoked by stimulation of the mossy fibers and the Schaffer collaterals, respectively. Current-clamp recordings in bicuculline-containing medium showed that, in the presence of corticotropin-releasing hormone, mossy fiber stimulation leads to large, synchronized, polysynaptically-evoked bursts of action potentials in CA3 pyramidal cells. In addition, the peptide caused a small, reversible decrease in the amplitude of the pharmacologically isolated (i.e. recorded in the presence of glutamate receptor antagonists) evoked inhibitory postsynaptic currents in CA3 pyramidal cells, but it did not significantly alter the frequency, amplitude, rise and decay time constants of spontaneous or miniature inhibitory postsynaptic currents. These data demonstrate that corticotropin-releasing hormone, an endogenous neuropeptide whose intracerebroventricular infusion results in seizure activity in immature rats, has diverse effects in the hippocampus which may contribute to epileptogenesis. It is proposed that the net effect of corticotropin-releasing hormone is a preferential amplification of those incoming excitatory signals which are strong enough to reach firing threshold in at least a subpopulation of CA3 cells. These findings suggest that the actions of corticotropin-releasing hormone on neuronal excitability in the immature hippocampus may play a role in human developmental epilepsies

    Prolonged febrile seizures in the immature rat model enhance hippocampal excitability long term.

    Get PDF
    Febrile seizures (FSs) constitute the most prevalent seizure type during childhood. Whether prolonged FSs alter limbic excitability, leading to spontaneous seizures (temporal lobe epilepsy) during adulthood, has been controversial. Recent data indicate that, in the immature rat model, prolonged FSs induce transient structural changes of some hippocampal pyramidal neurons and long-term functional changes of hippocampal circuitry. However, whether these neuroanatomical and electrophysiological changes promote hippocampal excitability and lead to epilepsy has remained unknown. By using in vivo and in vitro approaches, we determined that prolonged hyperthermia-induced seizures in immature rats caused long-term enhanced susceptibility to limbic convulsants that lasted to adulthood. Thus, extensive hippocampal electroencephalographic and behavioral monitoring failed to demonstrate spontaneous seizures in adult rats that had experienced hyperthermic seizures during infancy. However, 100% of animals developed hippocampal seizures after systemic administration of a low dose of kainate, and most progressed to status epilepticus. Conversely, a minority of normothermic and hyperthermic controls had (brief) seizures, none developing status epilepticus. In vitro, spontaneous epileptiform discharges were not observed in hippocampal-entorhinal cortex slices derived from either control or experimental groups. However, Schaeffer collateral stimulation induced prolonged, self-sustaining, status epilepticus-like discharges exclusively in slices from experimental rats. These data indicate that hyperthermic seizures in the immature rat model of FSs do not cause spontaneous limbic seizures during adulthood. However, they reduce thresholds to chemical convulsants in vivo and electrical stimulation in vitro, indicating persistent enhancement of limbic excitability that may facilitate the development of epilepsy
    • …
    corecore