34 research outputs found
Shift in epitope dominance of IgM and IgG responses to Plasmodium falciparum MSP1 block 4
<p>Abstract</p> <p>Background</p> <p><it>Plasmodium falciparum </it>merozoite surface protein-1 (MSP1) has been extensively studied as a blood-stage malaria vaccine candidate, with most work focused on the conserved 19 kDa and semi-conserved 42 kDa C-terminal regions (blocks 16-17) and the hypervariable N-terminal repeat region (block 2). However, recent genotyping studies suggest that additional regions of MSP1 may be under selective pressure, including a locus of intragenic recombination designated as block 4 within the 3' region of the gene.</p> <p>Methods</p> <p>The current study examined the antibody response to the two parental and two recombinant forms of block 4 and to blocks 16-17 (3D7) in study populations from Colombia, Papua New Guinea and Cameroon that differ in malaria transmission intensity and ethnic composition.</p> <p>Results</p> <p>IgM and IgG antibodies were detected against parental and recombinant MSP1 block 4 peptides in all three populations. Overall, 32-44% of the individuals produced IgM to one or more of the peptides, with most individuals having IgM antibodies reactive with both parental and recombinant forms. In contrast, IgG seropositivity to block 4 varied among populations (range 15-65%), with the majority of antibodies showing specificity for one or a pair of block 4 peptides. The IgG response to block 4 was significantly lower than that to blocks 16-17, indicating block 4 is subdominant. Antibodies to block 4 and blocks 16-17 displayed distinct IgG subclass biases, with block 4 responses biased toward IgG3 and blocks 16-17 toward IgG1. These patterns of responsiveness were consistently observed in the three study populations.</p> <p>Conclusions</p> <p>Production of antibodies specific for each parental and recombinant MSP1 block 4 allele in different populations exposed to <it>P. falciparum </it>is consistent with balancing selection of the MSP1 block 4 region by the immune response of individuals in areas of both low and high malaria transmission. MSP1 block 4 determinants may be important in isolate-specific immunity to <it>P. falciparum</it>.</p
A Pan-HPV Vaccine Based on Bacteriophage PP7 VLPs Displaying Broadly Cross-Neutralizing Epitopes from the HPV Minor Capsid Protein, L2
Current human papillomavirus (HPV) vaccines that are based on virus-like particles (VLPs) of the major capsid protein L1 largely elicit HPV type-specific antibody responses. In contrast, immunization with the HPV minor capsid protein L2 elicits antibodies that are broadly cross-neutralizing, suggesting that a vaccine targeting L2 could provide more comprehensive protection against infection by diverse HPV types. However, L2-based immunogens typically elicit much lower neutralizing antibody titers than L1 VLPs. We previously showed that a conserved broadly neutralizing epitope near the N-terminus of L2 is highly immunogenic when displayed on the surface of VLPs derived from the bacteriophage PP7. Here, we report the development of a panel of PP7 VLP-based vaccines targeting L2 that protect mice from infection with carcinogenic and non-carcinogenic HPV types that infect the genital tract and skin.L2 peptides from eight different HPV types were displayed on the surface of PP7 bacteriophage VLPs. These recombinant L2 VLPs, both individually and in combination, elicited high-titer anti-L2 IgG serum antibodies. Immunized mice were protected from high dose infection with HPV pseudovirus (PsV) encapsidating a luciferase reporter. Mice immunized with 16L2 PP7 VLPs or 18L2 PP7 VLPs were nearly completely protected from both PsV16 and PsV18 challenge. Mice immunized with the mixture of eight L2 VLPs were strongly protected from genital challenge with PsVs representing eight diverse HPV types and cutaneous challenge with HPV5 PsV.VLP-display of a cross-neutralizing HPV L2 epitope is an effective approach for inducing high-titer protective neutralizing antibodies and is capable of offering protection from a spectrum of HPVs associated with cervical cancer as well as genital and cutaneous warts
Clinical and epidemiological correlates of antibody response to human papillomaviruses (HPVs) as measured by a novel ELISA based on denatured recombinant HPV16 late (L) and early (E) antigens
<p>Abstract</p> <p>Background</p> <p>At present, seroreactivity is not a valuable parameter for diagnosis of Human Papillomavirus (HPV) infection but, it is potentially valuable as marker of viral exposure in elucidating the natural history of this infection. More data are needed to asses the clinical relevance of serological response to HPV.</p> <p>Objectives</p> <p>The objective was to assess the clinical and epidemiological correlates of HPV-seroreactivity in a cohort of HIV-negative and HIV-positive women.</p> <p>Methods</p> <p>Seroreactivity of 96 women, evaluated in an ELISA test based on denatured HPV16 late (L) and early (E) antigens, was correlated with their clinical and epidemiological data previously collected for a multi-centre Italian study, HPV-PathogenISS study.</p> <p>Results</p> <p>No significant correlation was found between HPV DNA detection and seroreactivity. Women, current smokers showed significantly less seroreactivity to L antigens as compared with the non-smokers. HIV-positive women showed significantly less (66.7%) antibody response as compared with HIV-negative women (89.3%), with particularly impaired response to L antigens. Women, HIV-positive and current smokers, showed by far the lowest seroprevalence (33.3%) as compared to 75.9% among all other women (OR = 0.158; 95%CI 0.036–0.695, p = 0.014; Fisher's exact test). Importantly, this association did not loose its significance when controlled for confounding from age (continuous variable) in multivariate analysis or using Mantel-Haenszel test for age-groups.</p> <p>Conclusion</p> <p>It is tempting to speculate that HIV-positive current smokers comprise a special high-risk group, with highly impaired immunological response that could prevent eradication of persistent HPV infections and thus contribute to development of CIN3/CC.</p
HPV vaccine: an overview of immune response, clinical protection, and new approaches for the future
Although long-term protection is a key-point in evaluating HPV-vaccine over time, there is currently inadequate information on the duration of HPV vaccine-induced immunity and on the mechanisms related to the activation of immune-memory. Longer-term surveillance in a vaccinated population is needed to identify waning immunity, evaluating any requirements for booster immunizations to assess vaccine efficacy against HPV-diseases. Current prophylactic vaccines have the primary end-points to protect against HPV-16 and 18, the genotypes more associated to cervical cancer worldwide. Nevertheless, data from many countries demonstrate the presence, at significant levels, of HPVs that are not included in the currently available vaccine preparations, indicating that these vaccines could be less effective in a particular area of the world. The development of vaccines covering a larger number of HPVs presents the most complex challenge for the future. Therefore, long term immunization and cross-protection of HPV vaccines will be discussed in light of new approaches for the future
Digital and high resolution stereo mapping of the Sonnblick Glacier (Austria) with HRSC-A
The airborne High Resolution Stereo Camera (HRSC-A) is a multiple line scanner which simultaneously acquires stereo and colour information with absolute spatial accuracy in the decimetre range. The multiple stereo principle applied ist particularly well suited for otaining precise topographic and imaging data of rugged terrain as found in mountainous regions: a permanently nadir-looking stereo channel provides favourable visibility conditions and minimises the occurrence of shadow zones which affect the performance of side-looking sensor systems such as SAR. A sophisticated and fully automated photogrammetric processing system allows to dertermine topography even in areas which are problematic for image correlation techniques neede to extract height information from stereo imagery, e.g. in areas with low texture information like snow. In order to supplement existing monitoring techniques for snow and ice-covered regions, HRSC-A was used in a pilot study to map an area of the Hohe Tauern mountain range in Austria enclosing some of the most intensively analysed glaciers in the Alps. The results are of outstanding quality and suggest the future application of HRSC-A for the remote sensing of snow and ice, particularly in the context of climate-related studies
The Airborne High Resolution Stereo Camera (HRSC-A) as a Tool for High Mountain Cartography
The airborne High Resolution Stereo Camera (HRSC-A) is a multiple line scanner which simultaneously acquires stereo and colour information with absolute spatial accuracy in the decimetre range. The multiple stereo principle applied ist particularly well suited for otaining precise topographic and imaging data of rugged terrain as found in mountainous regions: a permanently nadir-looking stereo channel provides favourable visibility conditions and minimises the occurrence of shadow zones which affect the performance of side-looking sensor systems such as SAR. A sophisticated and fully automated photogrammetric processing system allows to dertermine topography even in areas which are problematic for image correlation techniques neede to extract height information from stereo imagery, e.g. in areas with low texture information like snow. In order to supplement existing monitoring techniques for snow and ice-covered regions, HRSC-A was used in a pilot study to map an area of the Hohe Tauern mountain range in Austria enclosing some of the most intensively analysed glaciers in the Alps. The results are of outstanding quality and suggest the future application of HRSC-A for the remote sensing of snow and ice, particularly in the context of climate-related studies