9,856 research outputs found

    Moving frames for cotangent bundles

    Full text link
    Cartan's moving frames method is a standard tool in riemannian geometry. We set up the machinery for applying moving frames to cotangent bundles and its sub-bundles defined by non-holonomic constraints.Comment: 13 pages, to appear in Rep. Math. Phy

    SIGAME simulations of the [CII], [OI] and [OIII] line emission from star forming galaxies at z ~ 6

    Get PDF
    Of the almost 40 star forming galaxies at z>~5 (not counting QSOs) observed in [CII] to date, nearly half are either very faint in [CII], or not detected at all, and fall well below expectations based on locally derived relations between star formation rate (SFR) and [CII] luminosity. Combining cosmological zoom simulations of galaxies with SIGAME (SImulator of GAlaxy Millimeter/submillimeter Emission) we have modeled the multi-phased interstellar medium (ISM) and its emission in [CII], [OI] and [OIII], from 30 main sequence galaxies at z~6 with star formation rates ~3-23Msun/yr, stellar masses ~(0.7-8)x10^9Msun, and metallicities ~(0.1-0.4)xZsun. The simulations are able to reproduce the aforementioned [CII]-faintness at z>5, match two of the three existing z>~5 detections of [OIII], and are furthermore roughly consistent with the [OI] and [OIII] luminosity relations with SFR observed for local starburst galaxies. We find that the [CII] emission is dominated by the diffuse ionized gas phase and molecular clouds, which on average contribute ~66% and ~27%, respectively. The molecular gas, which constitutes only ~10% of the total gas mass is thus a more efficient emitter of [CII] than the ionized gas making up ~85% of the total gas mass. A principal component analysis shows that the [CII] luminosity correlates with the star formation activity as well as average metallicity. The low metallicities of our simulations together with their low molecular gas mass fractions can account for their [CII]-faintness, and we suggest these factors may also be responsible for the [CII]-faint normal galaxies observed at these early epochs.Comment: 24 pages, 14 figures. Accepted for publication in the Astrophysical Journa

    Low-Investment Energy Retrofit Framework for Small and Medium Office Buildings

    Get PDF
    AbstractSmall and medium office buildings consume a significant parcel of the U.S. building stock energy consumption. Still, owners lack resources and experience to conduct detailed energy audits and retrofit analysis. We present an eight-steps framework for an energy retrofit assessment in small and medium office buildings. Through a bottom-up approach and a web-based retrofit toolkit tested on a case study in Arizona, this methodology was able to save about 50% of the total energy consumed by the case study building, depending on the adopted measures and invested capital. While the case study presented is a deep energy retrofit, the proposed framework is effective in guiding the decision-making process that precedes any energy retrofit, deep or light

    Uncovering the topology of configuration space networks

    Get PDF
    The configuration space network (CSN) of a dynamical system is an effective approach to represent the ensemble of configurations sampled during a simulation and their dynamic connectivity. To elucidate the connection between the CSN topology and the underlying free-energy landscape governing the system dynamics and thermodynamics, an analytical soluti on is provided to explain the heavy tail of the degree distribution, neighbor co nnectivity and clustering coefficient. This derivation allows to understand the universal CSN network topology observed in systems ranging from a simple quadratic well to the native state of the beta3s peptide and a 2D lattice heteropolymer. Moreover CSN are shown to fall in the general class of complex networks describe d by the fitness model.Comment: 6 figure

    Remote ID for Rapid Assessment of Flight and Vehicle Information

    Get PDF
    The ability to rapidly identify UAS (Unmanned Aircraft Systems) in the field has emerged as a critical need for the integration of small UASs into the national airspace and counter-UAS operations. This paper proposes an architecture for rapid retrieval of UAS information leveraging NASA's current Unmanned Aircraft System (UAS) Traffic Management (UTM) system. The proposed architecture utilizes UTM components: FIMS (Flight Information Management System), USS (UAS Service Supplier), and vehicle registration and model database in order to provide assessment of the UAS reported in the field including the ability to distinguish between participating and non- participating UTM actors. Detailed system descriptions are provided and preliminary results from field tests conducted during UTM TCL (Technical Capability Level) 3 are discussed. It is found that 94 percent of the remote ID look-ups were successful. The average time of a look-up is found to be 1.2 seconds. Failure cases are examined and recommendations on next steps to advance UAS remote identification are provided

    Rapid Trajectory Prediction for a Fixed-Wing UAS in a Uniform Wind Field with Specified Arrival Times

    Get PDF
    This paper presents an algorithm to rapidly generate trajectories for a kinematic fixed-wing Unmanned Aircraft System (UAS) model flying at constant altitude in a uniform wind field. Arrival times are specified by operators and rapid generation is accomplished via an elliptic integral problem formulation. Simulations are provided that illustrate this approach in the context of NASA's UAS Traffic Management Project
    corecore