12 research outputs found

    Novel Views of Objects from a Single Image

    Get PDF
    Taking an image of an object is at its core a lossy process. The rich information about the three-dimensional structure of the world is flattened to an image plane and decisions such as viewpoint and camera parameters are final and not easily revertible. As a consequence, possibilities of changing viewpoint are limited. Given a single image depicting an object, novel-view synthesis is the task of generating new images that render the object from a different viewpoint than the one given. The main difficulty is to synthesize the parts that are disoccluded; disocclusion occurs when parts of an object are hidden by the object itself under a specific viewpoint. In this work, we show how to improve novel-view synthesis by making use of the correlations observed in 3D models and applying them to new image instances. We propose a technique to use the structural information extracted from a 3D model that matches the image object in terms of viewpoint and shape. For the latter part, we propose an efficient 2D-to-3D alignment method that associates precisely the image appearance with the 3D model geometry with minimal user interaction. Our technique is able to simulate plausible viewpoint changes for a variety of object classes within seconds. Additionally, we show that our synthesized images can be used as additional training data that improves the performance of standard object detectors

    Natural Illumination from Multiple Materials Using Deep Learning

    No full text
    Recovering natural illumination from a single Low-Dynamic Range (LDR) image is a challenging task. To remedy this situation we exploit two properties often found in everyday images. First, images rarely show a single material, but rather multiple ones that all reflect the same illumination. However, the appearance of each material is observed only for some surface orientations, not all. Second, parts of the illumination are often directly observed in the background, without being affected by reflection. Typically, this directly observed part of the illumination is even smaller. We propose a deep Convolutional Neural Network (CNN) that combines prior knowledge about the statistics of illumination and reflectance with an input that makes explicit use of these two observations. Our approach maps multiple partial LDR material observations represented as reflectance maps and a background image to a spherical High-Dynamic Range (HDR) illumination map. For training and testing we propose a new data set comprising of synthetic and real images with multiple materials observed under the same illumination. Qualitative and quantitative evidence shows how both multi-material and using a background are essential to improve illumination estimations

    What Is Around the Camera?

    Get PDF
    How much does a single image reveal about the environment it was taken in? In this paper, we investigate how much of that information can be retrieved from a foreground object, combined with the background (i.e. the visible part of the environment). Assuming it is not perfectly diffuse, the foreground object acts as a complexly shaped and far-from-perfect mirror An additional challenge is that its appearance confounds the light coming from the environment with the unknown materials it is made of. We propose a learning-based approach to predict the environment from multiple reflectance maps that are computed from approximate surface normals. The proposed method allows us to jointly model the statistics of environments and material properties. We train our system from synthesized training data, but demonstrate its applicability to real-world data. Interestingly, our analysis shows that the information obtained from objects made out of multiple materials often is complementary and leads to better performance

    AUTO3D: Novel view synthesis through unsupervisely learned variational viewpoint and global 3D representation

    Full text link
    This paper targets on learning-based novel view synthesis from a single or limited 2D images without the pose supervision. In the viewer-centered coordinates, we construct an end-to-end trainable conditional variational framework to disentangle the unsupervisely learned relative-pose/rotation and implicit global 3D representation (shape, texture and the origin of viewer-centered coordinates, etc.). The global appearance of the 3D object is given by several appearance-describing images taken from any number of viewpoints. Our spatial correlation module extracts a global 3D representation from the appearance-describing images in a permutation invariant manner. Our system can achieve implicitly 3D understanding without explicitly 3D reconstruction. With an unsupervisely learned viewer-centered relative-pose/rotation code, the decoder can hallucinate the novel view continuously by sampling the relative-pose in a prior distribution. In various applications, we demonstrate that our model can achieve comparable or even better results than pose/3D model-supervised learning-based novel view synthesis (NVS) methods with any number of input views.Comment: ECCV 202

    Image-Based Synthesis and Re-synthesis of Viewpoints Guided by 3D Models

    No full text
    We propose a technique to use the structural informa-tion extracted from a set of 3D models of an object class to improve novel-view synthesis for images showing unknown instances of this class. These novel views can be used to “amplify ” training image collections that typically contain only a low number of views or lack certain classes of views entirely (e. g. top views). We extract the correlation of position, normal, re-flectance and appearance from computer-generated images of a few exemplars and use this information to infer new appearance for new instances. We show that our approach can improve performance of state-of-the-art detectors using real-world training data. Additional applications include guided versions of inpainting, 2D-to-3D conversion, super-resolution and non-local smoothing. 1

    Learning like a toddler: Watching television series to learn vocabulary from images and audio

    No full text
    10.1145/2647868.2655036MM 2014 - Proceedings of the 2014 ACM Conference on Multimedia1189-119

    Deep Reflectance Maps

    Get PDF
    Undoing the image formation process and therefore decomposing appearance into its intrinsic properties is a challenging task due to the under-constrained nature of this inverse problem. While significant progress has been made on inferring shape, materials and illumination from images only, progress in an unconstrained setting is still limited. We propose a convolutional neural architecture to estimate reflectance maps of specular materials in natural lighting conditions. We achieve this in an end-to-end learning formulation that directly predicts a reflectance map from the image itself. We show how to improve estimates by facilitating additional supervision in an indirect scheme that first predicts surface orientation and afterwards predicts the reflectance map by a learning-based sparse data interpolation. In order to analyze performance on this difficult task, we propose a new challenge of Specular MAterials on SHapes with complex IllumiNation (SMASHINg) using both synthetic and real images. Furthermore, we show the application of our method to a range of image editing tasks on real images
    corecore