25 research outputs found

    Accuracy analysis of vertical deflection data observed with the Hannover Digital Zenith Camera System TZK2-D

    Get PDF
    This paper analyses the accuracy of vertical deflection measurements carried out with the Digital Zenith Camera System TZK2-D, an astrogeodetic state-of-the-art instrumentation developed at the University of Hannover. During 107 nights over a period of 3.5 years, the system was used for repeated vertical deflection observations at a selected station in Hannover. The acquired data set consists of about 27,300 single measurements and covers 276 h of observation time, respectively. For the data collected at an earlier stage of development (2003 to 2004), the accuracy of the nightly mean values has been found to be about 0".10-0".12. Due to applying a refined observation strategy since 2005, the accuracy of the vertical deflection measurements was enhanced into the unprecedented range of 0".05-0".08. Accessing the accuracy level of 0".05 requires usually 1 h of observational data, while the 0".08 accuracy level is attained after 20 min measurement time. In comparison to the analogue era of geodetic astronomy, the accuracy of vertical deflection observations is significantly improved by about one order of magnitude

    Error sources and data limitations for the prediction ofsurface gravity: a case study using benchmarks

    Get PDF
    Gravity-based heights require gravity values at levelled benchmarks (BMs), whichsometimes have to be predicted from surrounding observations. We use EGM2008 andthe Australian National Gravity Database (ANGD) as examples of model and terrestrialobserved data respectively to predict gravity at Australian national levelling network(ANLN) BMs. The aim is to quantify errors that may propagate into the predicted BMgravity values and then into gravimetric height corrections (HCs). Our results indicatethat an approximate ±1 arc-minute horizontal position error of the BMs causesmaximum errors in EGM2008 BM gravity of ~ 22 mGal (~55 mm in the HC at ~2200 melevation) and ~18 mGal for ANGD BM gravity because the values are not computed atthe true location of the BM. We use RTM (residual terrain modelling) techniques toshow that ~50% of EGM2008 BM gravity error in a moderately mountainous regioncan be accounted for by signal omission. Non-representative sampling of ANGDgravity in this region may cause errors of up to 50 mGals (~120 mm for the Helmertorthometric correction at ~2200 m elevation). For modelled gravity at BMs to beviable, levelling networks need horizontal BM positions accurate to a few metres, whileRTM techniques can be used to reduce signal omission error. Unrepresentative gravitysampling in mountains can be remedied by denser and more representative re-surveys,and/or gravity can be forward modelled into regions of sparser gravity

    The effect of EGM2008-based normal, normal-orthometric and Helmert orthometric height systems on the Australian levelling network

    Get PDF
    This paper investigates the normal-orthometric correction used in the definition of the Australian Height Datum, and also computes and evaluates normal and Helmert orthometric corrections for the Australian National Levelling Network (ANLN). Testing these corrections in Australia is important to establish which height system is most appropriate for any new Australian vertical datum. An approximate approach to assigning gravity values to ANLN benchmarks (BMs) is used, where the EGM2008-modelled gravity field is used to "re-construct" observed gravity at the BMs. Network loop closures (for first- and second-order levelling) indicate reduced misclosures for all height corrections considered, particularly in the mountainous regions of south eastern Australia. Differences between Helmert orthometric and normal-orthometric heights reach 44 cm in the Australian Alps, and differences between Helmert orthometric and normal heights are about 26 cm in the same region. Normal orthometric heights differ from normal heights by up to 18 cm in mountainous regions >2,000 m. This indicates that the quasigeoid is not compatible with normal-orthometric heights in Australia

    A Function Calculator as applied to Geodesy

    No full text

    Report about gravity reduction of the levelling network in Baden-Württemberg (summary)

    No full text

    Spatial triangulation in a local, astronomical oriented cartesian coordinate system

    No full text

    An Automatic Dead Reckoning Computer

    No full text

    Evidence of growth and sector zoning in hydrothermal quartz from Alpine veins

    No full text
    Several quartz crystals from three different Alpine vein localities and of known petrologic setting and evolution have been examined for possible elemental sector zoning in order to help to constrain the mechanisms of such trace element incorporation. Using different in situ techniques (EMPA, LA-ICPMS, SIMS, FTIR-spectroscopy), it was established that Al and Li concentrations can exceed several hundreds of ppma for distinct growth zones within crystals formed at temperatures of about 300 degrees C or less and that also display patterns of cyclic growth when examined with cathodoluminescence. In contrast, crystals formed at temperatures closer to 400 degrees C and without visible cyclic growth have low concentrations of Al and Li as well as other trace elements. Al and Li contents are correlated along profiles measured within the crystals and in general their proportion does not change along the profiles. No relationships were found between Al, Na, and K, and germanium has a qualitative relationship with Al. FTIR spectra also show OH(-) absorption bands within the quartz, with higher amplitudes in zones rich in Al and Li. Sector zoning is present. It is most pronounced between prismatic and rhombohedral faces of the same growth zone, but also between the rhombohedral faces of r and z, which contain different amounts of trace elements. The sector zoning is also expressed by changes in the Li/Al ratio, with higher ratios in 17 compared to r faces. It is concluded that the incorporation of trace elements into hydrothermal quartz from Alpine veins is influenced by growth mechanisms and surface-structures of the growing quartz crystals, the influence of which may change as a function of temperature, pH, as well as the chemical composition of the fluid
    corecore