1,417 research outputs found

    Orbital ordering in undoped manganites via a generalized Peierls instability

    Full text link
    We study the ground state orbital ordering of LaMnO3LaMnO_3, at weak electron-phonon coupling, when the spin state is A-type antiferromagnet. We determine the orbital ordering by extending to our Jahn-Teller system a recently developed Peierls instability framework for the Holstein model [1]. By using two-dimensional dynamic response functions corresponding to a mixed Jahn-Teller mode, we establish that the Q2Q_2 mode determines the orbital order.Comment: A few changes made. Accepted in Phys. Rev.

    A New Young Diagrammatic Method For Kronecker Products of O(n) and Sp(2m)

    Get PDF
    A new simple Young diagrammatic method for Kronecker products of O(n) and Sp(2m) is proposed based on representation theory of Brauer algebras. A general procedure for the decomposition of tensor products of representations for O(n) and Sp(2m) is outlined, which is similar to that for U(n) known as the Littlewood rules together with trace contractions from a Brauer algebra and some modification rules given by King.Comment: Latex, 11 pages, no figure

    Angle-resolved photoemission and first-principles electronic structure of single-crystalline α\alpha-uranium (001)

    Full text link
    Continuing the photoemission study begun with the work of Opeil et al. [Phys. Rev. B \textbf{73}, 165109 (2006)], in this paper we report results of an angle-resolved photoemission spectroscopy (ARPES) study performed on a high-quality single-crystal α\alpha-uranium at 173 K. The absence of surface-reconstruction effects is verified using X-ray Laue and low-energy electron diffraction (LEED) patterns. We compare the ARPES intensity map with first-principles band structure calculations using a generalized gradient approximation (GGA) and we find good correlations with the calculated dispersion of the electronic bands

    Enhancement of piezoelectricity in a mixed ferroelectric

    Full text link
    We use first-principles density-functional total energy and polarization calculations to calculate the piezoelectric tensor at zero temperature for both cubic and simple tetragonal ordered supercells of Pb_3GeTe_4. The largest piezoelectric coefficient for the tetragonal configuration is enhanced by a factor of about three with respect to that of the cubic configuration. This can be attributed to both the larger strain-induced motion of cations relative to anions and higher Born effective charges in the tetragonal case. A normal mode decomposition shows that both cation ordering and local relaxation weaken the ferroelectric instability, enhancing piezoelectricity.Comment: 5 pages, revtex, 2 eps figure

    Peierls to superfluid crossover in the one-dimensional, quarter-filled Holstein model

    Full text link
    We use continuous-time quantum Monte Carlo simulations to study retardation effects in the metallic, quarter-filled Holstein model in one dimension. Based on results which include the one- and two-particle spectral functions as well as the optical conductivity, we conclude that with increasing phonon frequency the ground state evolves from one with dominant diagonal order---2k_F charge correlations---to one with dominant off-diagonal fluctuations, namely s-wave pairing correlations. In the parameter range of this crossover, our numerical results support the existence of a spin gap for all phonon frequencies. The crossover can hence be interpreted in terms of preformed pairs corresponding to bipolarons, which are essentially localised in the Peierls phase, and "condense" with increasing phonon frequency to generate dominant pairing correlations.Comment: 11 pages, 5 figure

    An overview of the tapeworms of vertebrate bowels of the earth

    Get PDF
    entire volume OA; selected chapter posted hereCopyright: © The University of Kansas, Natural History Museum. This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

    Superconductivity in the Cuo Hubbard Model with Long-Range Coulomb Repulsion

    Full text link
    A multiband CuO Hubbard model is studied which incorporates long-range (LR) repulsive Coulomb interactions. In the atomic limit, it is shown that a charge-transfer from copper to oxygen ions occurs as the strength of the LR interaction is increased. The regime of phase separation becomes unstable, and is replaced by a uniform state with doubly occupied oxygens. As the holes become mobile a superfluid condensate is formed, as suggested by a numerical analysis of pairing correlation functions and flux quantization. Although most of the calculations are carried out on one dimensional chains, it isComment: LATEX, 14 pages, 4 figures available as postcript files or hard copy, preprint ORNL-CCIP/93/1

    Principal forms X^2 + nY^2 representing many integers

    Get PDF
    In 1966, Shanks and Schmid investigated the asymptotic behavior of the number of positive integers less than or equal to x which are represented by the quadratic form X^2+nY^2. Based on some numerical computations, they observed that the constant occurring in the main term appears to be the largest for n=2. In this paper, we prove that in fact this constant is unbounded as n runs through positive integers with a fixed number of prime divisors.Comment: 10 pages, title has been changed, Sections 2 and 3 are new, to appear in Abh. Math. Sem. Univ. Hambur
    corecore