217 research outputs found
Key Comparison : SIM.L-K3.2008. Calibration of angle standards. Report – Final
In 2000, a key comparison, CCL-K3 (optical polygon and angle blocks) was started, piloted by NMISA. Based on it, in 2007, the SIM metrological region started a SIM.L-K3 key comparison piloted by INMETRO. The results of this regional comparison (RMO key comparison) contribute to the Mutual Recognition Arrangement (MRA) between the national metrology institutes of the Metre Convention. It is linked with the CCL-K3 key comparison via laboratories that participated in both the CIPM and the RMO comparisons. This common participation establishes the link between the comparisons and ensures equivalence of national metrology institutes, according to the MRA between NMIs. The SIM NMIs that took part in the CCL-K3 were NIST, NRC and CENAM. However, NRC withdrew from it. GUM from Poland (EURAMET) and NPLI from India (APMP) were invited to participate in the SIM.L-K3 key comparison. The circulation of artefacts (a 12 faces polygon and 4 angle blocks) started in 2008 and was completed in 2009.Fil: Brum Vieira, Luiz Henrique. Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMetro); BrasilFil: Stone, Jack. National Institute of Standards and Technology (NIST); Estados UnidosFil: Viliesid, Miguel. Centro Nacional de MetrologÃa (CENAM); MéxicoFil: Gastaldi, Bruno R. Instituto Nacional de TecnologÃa Industrial (INTI); ArgentinaFil: Przybylska, Joanna. Główny UrzÄ…d Miar (GUM); PoloniaFil: Chaudhary, K. P. National Physical Laboratory (NPL); Indi
Darboux points and integrability of homogeneous Hamiltonian systems with three and more degrees of freedom
We consider natural complex Hamiltonian systems with degrees of freedom
given by a Hamiltonian function which is a sum of the standard kinetic energy
and a homogeneous polynomial potential of degree . The well known
Morales-Ramis theorem gives the strongest known necessary conditions for the
Liouville integrability of such systems. It states that for each there
exists an explicitly known infinite set \scM_k\subset\Q such that if the
system is integrable, then all eigenvalues of the Hessian matrix V''(\vd)
calculated at a non-zero \vd\in\C^n satisfying V'(\vd)=\vd, belong to
\scM_k. The aim of this paper is, among others, to sharpen this result. Under
certain genericity assumption concerning we prove the following fact. For
each and there exists a finite set \scI_{n,k}\subset\scM_k such that
if the system is integrable, then all eigenvalues of the Hessian matrix
V''(\vd) belong to \scI_{n,k}. We give an algorithm which allows to find
sets \scI_{n,k}. We applied this results for the case and we found
all integrable potentials satisfying the genericity assumption. Among them
several are new and they are integrable in a highly non-trivial way. We found
three potentials for which the additional first integrals are of degree 4 and 6
with respect to the momenta.Comment: 54 pages, 1 figur
Longitudinal associations between urinary biomarkers of phthalates and replacements with novel in vivo measures of placental health
STUDY QUESTION: What is the longitudinal association between gestational phthalate exposure and in vivo placental outcomes?
SUMMARY ANSWER: Phthalates were adversely associated with placental microvasculature, stiffness, and presence of calcification, with different metabolites associated with different outcomes.
WHAT IS KNOWN ALREADY: Phthalate exposure is ubiquitous and implicated as a contributor to adverse pregnancy outcomes, possibly through impacts on the placenta.
STUDY DESIGN, SIZE, DURATION: A total of 303 women were recruited in early pregnancy and prospectively followed for up to eight visits across gestation in the Human Placenta and Phthalates study.
PARTICIPANTS/MATERIALS, SETTING, METHODS: At each visit, women provided urine samples and underwent placental ultrasounds. Urine was analyzed for 18 metabolites of phthalates and replacements. We took the geometric mean of repeated measurements to reflect pregnancy-averaged phthalate or replacement exposure for each participant (n = 303). Placental microvasculature, stiffness, and microcalcification presence were quantified from ultrasounds at each visit. Higher scores reflected worse placental function for all measures. Generalized linear mixed models were created to estimate the association between pregnancy-averaged exposure biomarker concentrations and repeated outcome measurements for microvasculature and stiffness. Gestational age at the time of calcification detection was modeled using Cox proportional hazards models.
MAIN RESULTS AND THE ROLE OF CHANCE: Monocarboxyisononyl phthalate and summed di(2-ethylhexyl) phthalate metabolites were associated with impaired microvasculature development, such that an interquartile range increase in concentration was associated with 0.11 standard deviation increase in the microvasculature ratio, indicating poorer vascularization (95% CI: 0.00, 0.22); 0.11 [95% CI: -0.01, 0.22], respectively. Monoethyl phthalate was associated with increased placental stiffness (0.09 [95% CI: -0.01, 0.19]) while summed di-iso-butyl phthalate metabolites and monobenzyl phthalate were associated with increased hazard of calcification detection (hazard ratios: 1.18 [95% CI: 0.98, 1.42]; 1.13 [95% CI: 0.96, 1.34]).
LIMITATIONS, REASONS FOR CAUTION: Outcomes used in this study are novel and further investigation is needed to provide clinical context and relevance.
WIDER IMPLICATIONS OF THE FINDINGS: We found evidence of associations between select phthalate biomarkers and various aspects of in vivo placental health, although we did not observe consistency across placental outcomes. These findings could illustrate heterogeneous effects of phthalate exposure on placental function.
STUDY FUNDING/COMPETING INTEREST(S): This research was supported in part by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences (ZIA ES103344), and NIEHS T32ES007018. The authors declare that they have no competing interests to disclose. The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention. Use of trade names is for identification only and does not imply endorsement by the CDC, the Public Health Service, or the US Department of Health and Human Services.
TRIAL REGISTRATION NUMBER: N/A
Conserved presence of G-quadruplex forming sequences in the Long Terminal Repeat Promoter of Lentiviruses
G-quadruplexes (G4s) are secondary structures of nucleic acids that epigenetically regulate cellular processes. In the human immunodeficiency lentivirus 1 (HIV-1), dynamic G4s are located in the unique viral LTR promoter. Folding of HIV-1 LTR G4s inhibits viral transcription; stabilization by G4 ligands intensifies this effect. Cellular proteins modulate viral transcription by inducing/unfolding LTR G4s. We here expanded our investigation on the presence of LTR G4s to all lentiviruses. G4s in the 5'-LTR U3 region were completely conserved in primate lentiviruses. A G4 was also present in a cattle-infecting lentivirus. All other non-primate lentiviruses displayed hints of less stable G4s. In primate lentiviruses, the possibility to fold into G4s was highly conserved among strains. LTR G4 sequences were very similar among phylogenetically related primate viruses, while they increasingly differed in viruses that diverged early from a common ancestor. A strong correlation between primate lentivirus LTR G4s and Sp1/NF\u3baB binding sites was found. All LTR G4s folded: their complexity was assessed by polymerase stop assay. Our data support a role of the lentiviruses 5'-LTR G4 region as control centre of viral transcription, where folding/unfolding of G4s and multiple recruitment of factors based on both sequence and structure may take place
Increased Hepatic Insulin Action in Diet-Induced Obese Mice Following Inhibition of Glucosylceramide Synthase
Obesity is characterized by the accumulation of fat in the liver and other tissues, leading to insulin resistance. We have previously shown that a specific inhibitor of glucosylceramide synthase, which inhibits the initial step in the synthesis of glycosphingolipids (GSLs), improved glucose metabolism and decreased hepatic steatosis in both ob/ob and diet-induced obese (DIO) mice. Here we have determined in the DIO mouse model the efficacy of a related small molecule compound, Genz-112638, which is currently being evaluated clinically for the treatment of Gaucher disease, a lysosomal storage disorder.DIO mice were treated with the Genz-112638 for 12 to 16 weeks by daily oral gavage. Genz-112638 lowered HbA1c levels and increased glucose tolerance. Whole body adiposity was not affected in normal mice, but decreased in drug-treated obese mice. Drug treatment also significantly lowered liver triglyceride levels and reduced the development of hepatic steatosis. We performed hyperinsulinemic-euglycemic clamps on the DIO mice treated with Genz-112638 and showed that insulin-mediated suppression of hepatic glucose production increased significantly compared to the placebo treated mice, indicating a marked improvement in hepatic insulin sensitivity.These results indicate that GSL inhibition in obese mice primarily results in an increase in insulin action in the liver, and suggests that GSLs may have an important role in hepatic insulin resistance in conditions of obesity
Solving the conundrum of intra-specific variation in metabolic rate: A multidisciplinary conceptual and methodological toolkit
Researchers from diverse disciplines, including organismal and cellular physiology, sports science, human nutrition, evolution and ecology, have sought to understand the causes and consequences of the surprising variation in metabolic rate found among and within individual animals of the same species. Research in this area has been hampered by differences in approach, terminology and methodology, and the context in which measurements are made. Recent advances provide important opportunities to identify and address the key questions in the field. By bringing together researchers from different areas of biology and biomedicine, we describe and evaluate these developments and the insights they could yield, highlighting the need for more standardisation across disciplines. We conclude with a list of important questions that can now be addressed by developing a common conceptual and methodological toolkit for studies on metabolic variation in animals
The global distribution of fatal pesticide self-poisoning: Systematic review
<p>Abstract</p> <p>Background</p> <p>Evidence is accumulating that pesticide self-poisoning is one of the most commonly used methods of suicide worldwide, but the magnitude of the problem and the global distribution of these deaths is unknown.</p> <p>Methods</p> <p>We have systematically reviewed the worldwide literature to estimate the number of pesticide suicides in each of the World Health Organisation's six regions and the global burden of fatal self-poisoning with pesticides. We used the following data sources: Medline, EMBASE and psycINFO (1990–2007), papers cited in publications retrieved, the worldwide web (using Google) and our personal collections of papers and books. Our aim was to identify papers enabling us to estimate the proportion of a country's suicides due to pesticide self-poisoning.</p> <p>Results</p> <p>We conservatively estimate that there are 258,234 (plausible range 233,997 to 325,907) deaths from pesticide self-poisoning worldwide each year, accounting for 30% (range 27% to 37%) of suicides globally. Official data from India probably underestimate the incidence of suicides; applying evidence-based corrections to India's official data, our estimate for world suicides using pesticides increases to 371,594 (range 347,357 to 439,267). The proportion of all suicides using pesticides varies from 4% in the European Region to over 50% in the Western Pacific Region but this proportion is not concordant with the volume of pesticides sold in each region; it is the pattern of pesticide use and the toxicity of the products, not the quantity used, that influences the likelihood they will be used in acts of fatal self-harm.</p> <p>Conclusion</p> <p>Pesticide self-poisoning accounts for about one-third of the world's suicides. Epidemiological and toxicological data suggest that many of these deaths might be prevented if (a) the use of pesticides most toxic to humans was restricted, (b) pesticides could be safely stored in rural communities, and (c) the accessibility and quality of care for poisoning could be improved.</p
Comprehensive Structural and Substrate Specificity Classification of the Saccharomyces cerevisiae Methyltransferome
Methylation is one of the most common chemical modifications of biologically active molecules and it occurs in all life forms. Its functional role is very diverse and involves many essential cellular processes, such as signal transduction, transcriptional control, biosynthesis, and metabolism. Here, we provide further insight into the enzymatic methylation in S. cerevisiae by conducting a comprehensive structural and functional survey of all the methyltransferases encoded in its genome. Using distant homology detection and fold recognition, we found that the S. cerevisiae methyltransferome comprises 86 MTases (53 well-known and 33 putative with unknown substrate specificity). Structural classification of their catalytic domains shows that these enzymes may adopt nine different folds, the most common being the Rossmann-like. We also analyzed the domain architecture of these proteins and identified several new domain contexts. Interestingly, we found that the majority of MTase genes are periodically expressed during yeast metabolic cycle. This finding, together with calculated isoelectric point, fold assignment and cellular localization, was used to develop a novel approach for predicting substrate specificity. Using this approach, we predicted the general substrates for 24 of 33 putative MTases and confirmed these predictions experimentally in both cases tested. Finally, we show that, in S. cerevisiae, methylation is carried out by 34 RNA MTases, 32 protein MTases, eight small molecule MTases, three lipid MTases, and nine MTases with still unknown substrate specificity
Thermal modeling of lesion growth with radiofrequency ablation devices
BACKGROUND: Temperature is a frequently used parameter to describe the predicted size of lesions computed by computational models. In many cases, however, temperature correlates poorly with lesion size. Although many studies have been conducted to characterize the relationship between time-temperature exposure of tissue heating to cell damage, to date these relationships have not been employed in a finite element model. METHODS: We present an axisymmetric two-dimensional finite element model that calculates cell damage in tissues and compare lesion sizes using common tissue damage and iso-temperature contour definitions. The model accounts for both temperature-dependent changes in the electrical conductivity of tissue as well as tissue damage-dependent changes in local tissue perfusion. The data is validated using excised porcine liver tissues. RESULTS: The data demonstrate the size of thermal lesions is grossly overestimated when calculated using traditional temperature isocontours of 42°C and 47°C. The computational model results predicted lesion dimensions that were within 5% of the experimental measurements. CONCLUSION: When modeling radiofrequency ablation problems, temperature isotherms may not be representative of actual tissue damage patterns
Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells
Post-transcriptional modification of RNA nucleosides occurs in all living organisms. Pseudouridine, the most abundant modified nucleoside in non-coding RNAs, enhances the function of transfer RNA and ribosomal RNA by stabilizing the RNA structure. Messenger RNAs were not known to contain pseudouridine, but artificial pseudouridylation dramatically affects mRNA function—it changes the genetic code by facilitating non-canonical base pairing in the ribosome decoding centre. However, without evidence of naturally occurring mRNA pseudouridylation, its physiological relevance was unclear. Here we present a comprehensive analysis of pseudouridylation in Saccharomyces cerevisiae and human RNAs using Pseudo-seq, a genome-wide, single-nucleotide-resolution method for pseudouridine identification. Pseudo-seq accurately identifies known modification sites as well as many novel sites in non-coding RNAs, and reveals hundreds of pseudouridylated sites in mRNAs. Genetic analysis allowed us to assign most of the new modification sites to one of seven conserved pseudouridine synthases, Pus1–4, 6, 7 and 9. Notably, the majority of pseudouridines in mRNA are regulated in response to environmental signals, such as nutrient deprivation in yeast and serum starvation in human cells. These results suggest a mechanism for the rapid and regulated rewiring of the genetic code through inducible mRNA modifications. Our findings reveal unanticipated roles for pseudouridylation and provide a resource for identifying the targets of pseudouridine synthases implicated in human disease.American Cancer Society (Robbie Sue Mudd Kidney Cancer Research Scholar Grant RSG-13-396-01-RMC)National Institutes of Health (U.S.) (GM094303)National Institutes of Health (U.S.) (GM081399)American Cancer Society. New England Division (Ellison Foundation Postdoctoral Fellowship)American Cancer Society (Postdoctoral Fellowship PF-13-319-01-RMC)National Institutes of Health (U.S.) (Pre-doctoral Training Grant T32GM007287
- …