725 research outputs found

    Modeling Holocene Peatland Carbon Accumulation in North America

    Get PDF
    Peatlands are a large carbon reservoir. Yet the quantification of their carbon stock still has a large uncertainty due to lacking observational data and well‐tested peatland biogeochemistry models. Here, a process‐based peatland model was calibrated using long‐term peat carbon accumulation data at multiple sites in North America. The model was then applied to quantify the peat carbon accumulation rates and stocks within North America over the last 12,000 years. We estimated that 85–174 Pg carbon was accumulated in North American peatlands over the study period including 0.37–0.76 Pg carbon in subtropical peatlands. During the period from 10,000 to 8,000 years ago, the warmer and wetter conditions might have played an important role in stimulating peat carbon accumulation by enhancing plant photosynthesis. Enhanced peat decomposition due to warming slowed the carbon accumulation through the rest of the Holocene. While recent modeling studies indicate that the northern peatlands will continue to act as a carbon sink in this century, our studies suggest that future enhanced peat decomposition accompanied by peatland areal changes induced by permafrost degradation and other disturbances shall confound the sink and source analysis

    Water, Energy, and Carbon with Artificial Neural Networks (WECANN): a statistically based estimate of global surface turbulent fluxes and gross primary productivity using solar-induced fluorescence

    Get PDF
    A new global estimate of surface turbulent fluxes, latent heat flux (LE) and sensible heat flux (H), and gross primary production (GPP) is developed using a machine learning approach informed by novel remotely sensed solar-induced fluorescence (SIF) and other radiative and meteorological variables. This is the first study to jointly retrieve LE, H, and GPP using SIF observations. The approach uses an artificial neural network (ANN) with a target dataset generated from three independent data sources, weighted based on a triple collocation (TC) algorithm. The new retrieval, named Water, Energy, and Carbon with Artificial Neural Networks (WECANN), provides estimates of LE, H, and GPP from 2007 to 2015 at 1°  ×  1° spatial resolution and at monthly time resolution. The quality of ANN training is assessed using the target data, and the WECANN retrievals are evaluated using eddy covariance tower estimates from the FLUXNET network across various climates and conditions. When compared to eddy covariance estimates, WECANN typically outperforms other products, particularly for sensible and latent heat fluxes. Analyzing WECANN retrievals across three extreme drought and heat wave events demonstrates the capability of the retrievals to capture the extent of these events. Uncertainty estimates of the retrievals are analyzed and the interannual variability in average global and regional fluxes shows the impact of distinct climatic events – such as the 2015 El Niño – on surface turbulent fluxes and GPP

    Practical recommendations for diagnosis and management of respiratory muscle weakness in late-onset Pompe disease

    Get PDF
    Pompe disease is an autosomal-recessive lysosomal storage disorder characterized by progressive myopathy with proximal muscle weakness, respiratory muscle dysfunction, and cardiomyopathy (in infants only). In patients with juvenile or adult disease onset, respiratory muscle weakness may decline more rapidly than overall neurological disability. Sleep-disordered breathing, daytime hypercapnia, and the need for nocturnal ventilation eventually evolve in most patients. Additionally, respiratory muscle weakness leads to decreased cough and impaired airway clearance, increasing the risk of acute respiratory illness. Progressive respiratory muscle weakness is a major cause of morbidity and mortality in late-onset Pompe disease even if enzyme replacement therapy has been established. Practical knowledge of how to detect, monitor and manage respiratory muscle involvement is crucial for optimal patient care. A multidisciplinary approach combining the expertise of neurologists, pulmonologists, and intensive care specialists is needed. Based on the authors’ own experience in over 200 patients, this article conveys expert recommendations for the diagnosis and management of respiratory muscle weakness and its sequelae in late-onset Pompe disease

    Experience with fibre channel in the environment of the ATLAS DAQ protoype "-1" project

    Get PDF
    Fibre Channel equipment has been evaluated in the environment of the ATLAS DAQ prototype "-1". Fibre Channel PCI and PMC cards have been tested on PwerPC-based VME processor boards running LynxOS and on Pentium-based personal computers running Windows NT. The performance in terms of overhead and bandwidth has been measured in point-to-point, arbitrated loop and fabric configuration with a Fibre Ch annel switch. The possible used of the equipment for event building in the ATLAS DAQ prototype "-1" has been studied

    Stability and turbulent transport in Taylor–Couette flow from analysis of experimental data

    Get PDF
    International audienceThis paper provides a prescription for the turbulent viscosity in rotating shear flows for use e.g. in geophysical and astrophysical contexts. This prescription is the result of the detailed analysis of the experimental data obtained in several studies of the transition to turbulence and turbulent transport in Taylor-Couette flow. We first introduce a new set of control parameters, based on dynamical rather than geometrical considerations, so that the analysis applies more naturally to rotating shear flows in general and not only to Taylor-Couette flow. We then investigate the transition thresholds in the supercritical and the subcritical regime in order to extract their general dependencies on the control parameters. The inspection of the mean profiles provides us with some general hints on the mean to laminar shear ratio. Then the examination of the torque data allows us to propose a decomposition of the torque dependence on the control parameters in two terms, one completely given by measurements in the case where the outer cylinder is at rest, the other one being a universal function provided here from experimental fits. As a result, we obtain a general expression for the turbulent viscosity and compare it to existing prescription in the literature. Finally, throughout all the paper we discuss the influence of additional effects such as stratification or magnetic fields

    Association of TGFÎČ1, TNFα, CCR2 and CCR5 gene polymorphisms in type-2 diabetes and renal insufficiency among Asian Indians

    Get PDF
    BACKGROUND: Cytokines play an important role in the development of diabetic chronic renal insufficiency (CRI). Transforming growth factor ÎČ1 (TGF ÎČ1) induces renal hypertrophy and fibrosis, and cytokines like tumor necrosis factor-alpha (TNFα), chemoattractant protein-1 (MCP-1), and regulated upon activation and normal T cell expressed and secreted (RANTES) mediate macrophage infiltration into kidney. Over expression of these chemokines leads to glomerulosclerosis and interstitial fibrosis. The effect of MCP-1 and RANTES on kidney is conferred by their receptors i.e., chemokine receptor (CCR)-2 and CCR-5 respectively. We tested association of nine single nucleotide polymorphisms (SNPs) from TGFÎČ1, TNFα, CCR2 and CCR5 genes among individuals with type-2 diabetes with and without renal insufficiency. METHODS: Type-2 diabetes subjects with chronic renal insufficiency (serum creatinine ≄ 3.0 mg/dl) constituted the cases, and matched individuals with diabetes of duration ≄ 10 years and normoalbuminuria were evaluated as controls from four centres in India. Allelic and genotypic contributions of nine SNPs from TGFÎČ1, TNFα, CCR2 and CCR5 genes to diabetic CRI were tested by computing odds ratio (OR) and 95% confidence intervals (CI). Sub-analysis of CRI cases diabetic retinopathy status as dependent variable and SNP genotypes as independent variable in a univariate logistic regression was also performed. RESULTS: SNPs Tyr81His and Thr263Ile in TGF ÎČ1 gene were monomorphic, and Arg25Pro in TGF ÎČ1 gene and Δ32 polymorphism in CCR5 gene were minor variants (minor allele frequency <0.05) and therefore were not considered for case-control analysis. A significant allelic association of 59029G>A SNP of CCR5 gene has been observed and the allele 59029A seems to confer predisposition to development of diabetic CRI (OR 1.39; CI 1.04–1.84). In CRI subjects a compound group of genotypes "GA and AA" of SNP G>A -800 was found to confer predisposition for proliferative retinopathy (OR 3.03; CI 1.08–8.50, p = 0.035). CONCLUSION: Of the various cytokine gene polymorphisms tested, allele 59029A of CCR5 gene is significantly associated with diabetic renal insufficiency among Asian Indians. Result obtained for 59029G>A SNP of CCR5 gene is in conformity with reports from a Japanese population but due to sub-optimal power of the sample, replication in larger sample set is warranted

    Status of the SOLEIL femtosecond X-ray source

    No full text
    http://accelconf.web.cern.ch/AccelConf/FEL2012/papers/wepd04.pdfInternational audienceAn electron bunch slicing setup is presently under construction on the SOLEIL storage ring for delivering 100 fs (rms) long photon pulses to two undulator-based beamlines providing soft (TEMPO) and hard X-rays (CRISTAL). Thanks to the non-zero dispersion function present in all straight sections of the storage ring, the sliced bunches can be easily separated from the core bunches. The modulator is a wiggler composed of 20 periods of 164.4 mm. It produces a magnetic field of 1.8 T at a minimum gap of 14.5 mm. To modulate the kinetic energy of the electrons in the wiggler, a Ti:Sa laser will be used, which produces 50 fs pulses at 800 nm with a repetition rate of 2.5 kHz. The laser beam is splitted into two branches in order to provide 2 mJ to the modulator and 0.5 mJ as pump pulse for the CRISTAL and TEMPO end stations. Focusing optics and beam path, from the laser hutch to the inside of the storage ring tunnel are presently under finalization. In this paper, we will report on the specificities of the SOLEIL setup, the status of its installation and the expected performances

    A robust walking detection algorithm using a single foot-worn inertial sensor: validation in real-life settings

    Get PDF
    Walking activity and gait parameters are considered among the most relevant mobility-related parameters. Currently, gait assessments have been mainly analyzed in laboratory or hospital settings, which only partially reflect usual performance (i.e., real world behavior). In this study, we aim to validate a robust walking detection algorithm using a single foot-worn inertial measurement unit (IMU) in real-life settings. We used a challenging dataset including 18 individuals performing free-living activities. A multi-sensor wearable system including pressure insoles, multiple IMUs, and infrared distance sensors (INDIP) was used as reference. Accurate walking detection was obtained, with sensitivity and specificity of 98 and 91% respectively. As robust walking detection is needed for ambulatory monitoring to complete the processing pipeline from raw recorded data to walking/mobility outcomes, a validated algorithm would pave the way for assessing patient performance and gait quality in real-world conditions
    • 

    corecore