443 research outputs found

    Angular sensitivity of blowfly photoreceptors: intracellular measurements and wave-optical predictions

    Get PDF
    The angular sensitivity of blowfly photoreceptors was measured in detail at wavelengths λ = 355, 494 and 588 nm. The measured curves often showed numerous sidebands, indicating the importance of diffraction by the facet lens. The shape of the angular sensitivity profile is dependent on wavelength. The main peak of the angular sensitivities at the shorter wavelengths was flattened. This phenomenon as well as the overall shape of the main peak can be quantitatively described by a wave-optical theory using realistic values for the optical parameters of the lens-photoreceptor system. At a constant response level of 6 mV (almost dark adapted), the visual acuity of the peripheral cells R1-6 is at longer wavelengths mainly diffraction limited, while at shorter wavelengths the visual acuity is limited by the waveguide properties of the rhabdomere. Closure of the pupil narrows the angular sensitivity profile at the shorter wavelengths. This effect can be fully described by assuming that the intracellular pupil progressively absorbs light from the higher order modes. In light-adapted cells R1-6 the visual acuity is mainly diffraction limited at all wavelengths.

    First observation of two hyperfine transitions in antiprotonic He-3

    Get PDF
    We report on the first experimental results for microwave spectroscopy of the hyperfine structure of antiprotonic He-3. Due to the helium nuclear spin, antiprotonic He-3 has a more complex hyperfine structure than antiprotonic He-4 which has already been studied before. Thus a comparison between theoretical calculations and the experimental results will provide a more stringent test of the three-body quantum electrodynamics (QED) theory. Two out of four super-super-hyperfine (SSHF) transition lines of the (n,L)=(36,34) state were observed. The measured frequencies of the individual transitions are 11.12559(14) GHz and 11.15839(18) GHz, less than 1 MHz higher than the current theoretical values, but still within their estimated errors. Although the experimental uncertainty for the difference of these frequencies is still very large as compared to that of theory, its measured value agrees with theoretical calculations. This difference is crucial to be determined because it is proportional to the magnetic moment of the antiproton.Comment: 8 pages, 6 figures, just published (online so far) in Physics Letters

    Amphibian Immune Defenses against Chytridiomycosis: Impacts of Changing Environments

    Get PDF
    Eco-immunology is the field of study that attempts to understand the functions of the immune system in the context of the host's environment. Amphibians are currently suffering devastating declines and extinctions in nearly all parts of the world due to the emerging infectious disease chytridiomycosis caused by the chytrid fungus, Batrachochytrium dendrobatidis. Because chytridiomycosis is a skin infection and remains confined to the skin, immune defenses of the skin are critical for survival. Skin defenses include secreted antimicrobial peptides and immunoglobulins as well as antifungal metabolites produced by symbiotic skin bacteria. Low temperatures, toxic chemicals, and stress inhibit the immune system and may impair natural defenses against B. dendrobatidis. Tadpoles' mouth parts can be infected by B. dendrobatidis. Damage to the mouth parts can impair growth, and the affected tadpoles maintain the pathogen in the environment even when adults have dispersed. Newly metamorphosing frogs appear to be especially vulnerable to infection and to the lethal effects of this pathogen because the immune system undergoes a dramatic reorganization at metamorphosis, and postmetamorphic defenses are not yet mature. Here we review our current understanding of amphibian immune defenses against B. dendrobatidis and the ability of the pathogen to resist those defenses. We also briefly review what is known about the impacts of temperature, environmental chemicals, and stress on the host-pathogen interactions and suggest future directions for researc

    Non-Equilibrium Electron Transport in Two-Dimensional Nano-Structures Modeled by Green's Functions and the Finite-Element Method

    Get PDF
    We use the effective-mass approximation and the density-functional theory with the local-density approximation for modeling two-dimensional nano-structures connected phase-coherently to two infinite leads. Using the non-equilibrium Green's function method the electron density and the current are calculated under a bias voltage. The problem of solving for the Green's functions numerically is formulated using the finite-element method (FEM). The Green's functions have non-reflecting open boundary conditions to take care of the infinite size of the system. We show how these boundary conditions are formulated in the FEM. The scheme is tested by calculating transmission probabilities for simple model potentials. The potential of the scheme is demonstrated by determining non-linear current-voltage behaviors of resonant tunneling structures.Comment: 13 pages,15 figure

    Real-space local polynomial basis for solid-state electronic-structure calculations: A finite-element approach

    Full text link
    We present an approach to solid-state electronic-structure calculations based on the finite-element method. In this method, the basis functions are strictly local, piecewise polynomials. Because the basis is composed of polynomials, the method is completely general and its convergence can be controlled systematically. Because the basis functions are strictly local in real space, the method allows for variable resolution in real space; produces sparse, structured matrices, enabling the effective use of iterative solution methods; and is well suited to parallel implementation. The method thus combines the significant advantages of both real-space-grid and basis-oriented approaches and so promises to be particularly well suited for large, accurate ab initio calculations. We develop the theory of our approach in detail, discuss advantages and disadvantages, and report initial results, including the first fully three-dimensional electronic band structures calculated by the method.Comment: replacement: single spaced, included figures, added journal referenc

    Annotation of immune genes in the extinct thylacine (Thylacinus cynocephalus)

    Get PDF
    Advances in genome sequencing technology have enabled genomes of extinct species to be sequenced. However, given the fragmented nature of these genome assemblies, it is not clear whether it is possible to comprehensively annotate highly variable and repetitive genes such as those involved in immunity. As such, immune genes have only been investigated in a handful of extinct genomes, mainly in human lineages. In 2018 the genome of the thylacine (Thylacinus cynocephalus), a carnivorous marsupial from Tasmania that went extinct in 1936, was sequenced. Here we attempt to characterise the immune repertoire of the thylacine and determine similarity to its closest relative with a genome available, the Tasmanian devil (Sarcophilus harrisii), as well as other marsupials. Members from all major immune gene families were identified. However, variable regions could not be characterised, and complex families such as the major histocompatibility complex (MHC) were highly fragmented and located across multiple small scaffolds. As such, at a gene level we were unable to reconstruct full-length coding sequences for the majority of thylacine immune genes. Despite this, we identified genes encoding functionally important receptors and immune effector molecules, which suggests the functional capacity of the thylacine immune system was similar to other mammals. However, the high number of partial immune gene sequences identified limit our ability to reconstruct an accurate picture of the thylacine immune repertoire

    Improved Study of the Antiprotonic Helium Hyperfine Structure

    Get PDF
    We report the initial results from a systematic study of the hyperfine (HF) structure of antiprotonic helium (n,l) = (37,~35) carried out at the Antiproton Decelerator (AD) at CERN. We performed a laser-microwave-laser resonance spectroscopy using a continuous wave (cw) pulse-amplified laser system and microwave cavity to measure the HF transition frequencies. Improvements in the spectral linewidth and stability of our laser system have increased the precision of these measurements by a factor of five and reduced the line width by a factor of three compared to our previous results. A comparison of the experimentally measured transition frequencies with three body QED calculations can be used to determine the antiproton spin magnetic moment, leading towards a test of CPT invariance.Comment: 14 pages 9 figure

    Half-metallic ferrimagnetism in the [Sc1−x_{1-x}Vx_x]C and [Sc1−x_{1-x} Vx_x]Si alloys adopting the zinc-blende and wurtzite structures from first-principles

    Full text link
    Employing first-principles calculations we study the structural, electronic and magnetic properties of the [Sc1−x_{1-x}Vx_x]C and [Sc1−x_{1-x}Vx_x]Si alloys. In their equilibrium rocksalt structure all alloys are non-magnetic. The zincblende and wurtzite structures are degenerated with respect to the total energy. For all concentrations the alloys in these lattice structures are half-metallic with the gap located in the spin-down band. The total spin moment follows the Slater-Pauling behavior varying linearly between the -1 μB\mu_B of the perfect ScC and ScSi alloys and the +1 μB\mu_B of the perfect VC and VSi alloys. For the intermediate concentrations V and Sc atoms have antiparallel spin magnetic moments and the compounds are half-metallic ferrimagnets. At the critical concentration, both [Sc0.5_{0.5}V0.5_{0.5}]C and [Sc0.5_{0.5}V0.5_{0.5}]Si alloys present zero total spin-magnetic moment but the C-based alloy shows a semiconducting behavior contrary to the Si-based alloys which is a half-metallic antiferromagnet

    Modular Synthesis of Bicyclic Twisted Amides and Anilines

    Get PDF
    Bridged amides and anilines display interesting properties owing to perturbation of conjugation of the nitrogen lone-pair with the adjacent π-system. A convergent approach to diazabicyclic scaffolds which contain either twisted amides or anilines is described, based on the photocatalysed hydroamination of cyclic enecarbamates and subsequent cyclisation. The modular nature of the synthesis allows for variation of the degree of ‘twist’ and hence the properties of the amides and anilines
    • …
    corecore