34 research outputs found
Soft lithography replica molding of critically coupled polymer microring resonators
We use soft lithography replica molding to fabricate unclad polystyrene (PS) and clad SU-8 microring resonator filters. The PS resonator has an intrinsic quality factor of 1.0/spl times/10/sup 4/ at /spl lambda/=1.55 /spl mu/m, while that of the SU-8 resonator is 7100. The extinction ratios of the PS and SU-8 microring filters are -12 and -20 dB, respectively, with net insertion losses of 6.7 and 9.9 dB. The good quality factors and high extinction ratios of the microring resonator filters show the practicality of soft-lithography replica molding for the fabrication of integrated optical devices
Coupled Resonator Optical Waveguides: Toward the Slowing and Storage of Light
The development of a simple, solid-state-based technology to slow the propagation of light could prove an important step in the realization of the high-bit-rate communication systems of the future. The use of coupled resonator optical waveguides (CROWs) as practical elements to slow and store light pulses is one possibility
Replica-molded electro-optic polymer Mach–Zehnder modulator
A Mach-Zehnder electro-optic polymer amplitude modulator is fabricated by a simple and high-throughput soft-stamp replica-molding technique. The modulator structure incorporates the highly nonlinear and stable chromophore, AJL8, doped in amorphous polycarbonate. Single-arm phase-retardation results in a halfwave voltage (V-pi) of 8.4 V at 1600 nm. The on/off extinction ratio is better than 19 dB, resulting from precise Y-branch power splitters and good waveguide uniformity. These results indicate that the simple fabrication process allows for good optical performance from high-fidelity replicas of the original master devices
Coupled resonator optical waveguides (CROW)
We investigate theoretically and experimentally the characteristics, performance and possible applications of coupled resonator optical waveguides (CROWs). The ability to engineer the dispersion properties of a CROW and especially the ability to realize ultra-slow group velocities paves the way for various applications such as delay lines, optical memories and all-optical switching. Simple analytic expressions for the time delay, usable bandwidth and overall losses in CROW delay lines are derived and compared to exact numerical simulation. Good quantitative agreement is found between the theoretical transmission function obtained by transfer matrix formalism and the measurement of a CROW interferometer realized in polymer material
Matrix analysis of microring coupled-resonator optical waveguides
We use the coupling matrix formalism to investigate continuous-wave and pulse propagation through microring coupled-resonator optical waveguides (CROWs). The dispersion relation agrees with that derived using the tight-binding model in the limit of weak inter-resonator coupling. We obtain an analytical expression for pulse propagation through a semi-infinite CROW in the case of weak coupling which fully accounts for the nonlinear dispersive characteristics. We also show that intensity of a pulse in a CROW is enhanced by a factor inversely proportional to the inter-resonator coupling. In finite CROWs, anomalous dispersions allows for a pulse to propagate with a negative group velocity such that the output pulse appears to emerge before the input as in “superluminal” propagation. The matrix formalism is a powerful approach for microring CROWs since it can be applied to structures and geometries for which analyses with the commonly used tight-binding approach are not applicable
Coupled resonator optical waveguides (CROW)
We investigate theoretically and experimentally the characteristics, performance and possible applications of coupled resonator optical waveguides (CROWs). The ability to engineer the dispersion properties of a CROW and especially the ability to realize ultra-slow group velocities paves the way for various applications such as delay lines, optical memories and all-optical switching. Simple analytic expressions for the time delay, usable bandwidth and overall losses in CROW delay lines are derived and compared to exact numerical simulation. Good quantitative agreement is found between the theoretical transmission function obtained by transfer matrix formalism and the measurement of a CROW interferometer realized in polymer material
All-organic and organic-silicon photonic ring micro-resonators
Organic electro-optic materials offer exceptional processability (both from solution and the gas phase) that permit fabrication of flexible and conformal device structures and the integration of organic materials with a wide range of disparate materials. In addition, organic electro-optical materials have fundamental response times that are in the terahertz region, and useable electro-optic coefficients that are approaching 300 pm/V (at telecommunication wavelengths). In addition to fabrication by traditional lithographic methods, multiple devices on a single wafer have been fabricated by soft and nano-imprint lithography. In this presentation, we review the fabrication and performance evaluation of a number of all-organic and organic-silicon photonic ring microresonator devices. Both electrical and thermal tuning of devices, including both single and multiple ring micro-resonators, are demonstrated
Wide-range tuning of polymer microring resonators by the photobleaching of CLD-1 chromophores
We present a simple and effective method for the postfabrication trimming of optical microresonators. We photobleach CLD-1 chromophores to tune the resonance wavelengths of polymer microring resonator optical notch filters. A maximum wavelength shift of ~8.73 nm is observed. The resonators are fabricated with a soft-lithography molding technique and have an intrinsic Q value of 2.6 x 10^4 and a finesse of 9.3. The maximum extinction ratio of the resonator filters is ~34 dB, indicating that the critical coupling condition has been satisfied