65 research outputs found

    Post-synthetic Modification of DUT-5-based Metal Organic Frameworks for the Generation of Single-site Catalysts and their Application in Selective Epoxidation Reactions

    Get PDF
    New single‐site catalysts based on mixed‐linker metal‐organic frameworks with DUT‐5 structure, which contain immobilized Co2+, Mn2+ and Mn3+ complexes, have successfully been synthesized via post‐synthetic modification. 2,2’‐Bipyridine‐5,5’‐dicarboxylate linkers were directly metalated, while 2‐amino‐4,4’‐biphenyldicarboxylate linkers were post‐synthetically modified by their conversion to Schiff‐base ligands and a subsequent immobilization of the metal complexes. The resulting materials were used as catalysts in the selective epoxidation of trans‐stilbene and the activities and selectivities of the different catalysts were compared. The influence of various reaction parameters on conversion, yield and selectivity were investigated. Very low catalyst amounts of 0.02 mol % were sufficient to obtain a high conversion of trans‐stilbene using molecular oxygen from air as the oxidant. For cobalt‐containing MOF catalysts, conversions up to 90 % were observed and, thus, they were more active than their manganese‐containing counterparts. Recycling experiments and hot filtration tests proved that the reactions were mainly catalyzed via heterogeneous pathways

    Somatic neurofibromatosis type 1 (NF1) inactivation events in cutaneous neurofibromas of a single NF1 patient

    Get PDF
    Neurofibromatosis type 1 (NF1) (MIM#162200) is a relatively frequent genetic condition that predisposes to tumor formation. The main types of tumors occurring in NF1 patients are cutaneous and subcutaneous neurofibromas, plexiform neurofibromas, optic pathway gliomas, and malignant peripheral nerve sheath tumors. To search for somatic mutations in cutaneous (dermal) neurofibromas, whole-exome sequencing (WES) was performed on seven spatially separated tumors and two reference tissues (blood and unaffected skin) from a single NF1 patient. Validation of WES findings was done using routine Sanger sequencing or Sequenom IPlex SNP genotyping. Exome sequencing confirmed the existence of a known familial splice-site mutation NM_000267.3:c.3113+1G>A in exon 23 of NF1 gene (HGMD ID CS951480) in blood, unaffected skin, and all tumor samples. In five out of seven analyzed tumors, we additionally detected second-hit mutations in the NF1 gene. Four of them were novel and one was previously observed. Each mutation was distinct, demonstrating the independent origin of each tumor. Only in two of seven tumors we detected an additional somatic mutation that was not associated with NF1. Our study demonstrated that somatic mutations of NF1 are likely the main drivers of cutaneous tumor formation. The study provides evidence for the rareness of single base pair level alterations in the exomes of benign NF1 cutaneous tumors.European Journal of Human Genetics advance online publication, 8 October 2014; doi:10.1038/ejhg.2014.210

    Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Collaboration has reported evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies E>Eth=5.5×1019E>E_{th}=5.5\times 10^{19} eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at E>EthE>E_{th} are heavy nuclei with charge ZZ, the proton component of the sources should lead to excesses in the same regions at energies E/ZE/Z. We here report the lack of anisotropies in these directions at energies above Eth/ZE_{th}/Z (for illustrative values of Z=6, 13, 26Z=6,\ 13,\ 26). If the anisotropies above EthE_{th} are due to nuclei with charge ZZ, and under reasonable assumptions about the acceleration process, these observations imply stringent constraints on the allowed proton fraction at the lower energies

    The Fluorescence Detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics Research Section

    Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory

    Get PDF
    The advent of the Auger Engineering Radio Array (AERA) necessitates the development of a powerful framework for the analysis of radio measurements of cosmic ray air showers. As AERA performs "radio-hybrid" measurements of air shower radio emission in coincidence with the surface particle detectors and fluorescence telescopes of the Pierre Auger Observatory, the radio analysis functionality had to be incorporated in the existing hybrid analysis solutions for fluoresence and surface detector data. This goal has been achieved in a natural way by extending the existing Auger Offline software framework with radio functionality. In this article, we lay out the design, highlights and features of the radio extension implemented in the Auger Offline framework. Its functionality has achieved a high degree of sophistication and offers advanced features such as vectorial reconstruction of the electric field, advanced signal processing algorithms, a transparent and efficient handling of FFTs, a very detailed simulation of detector effects, and the read-in of multiple data formats including data from various radio simulation codes. The source code of this radio functionality can be made available to interested parties on request.Comment: accepted for publication in NIM A, 13 pages, minor corrections to author list and references in v

    Search for First Harmonic Modulation in the Right Ascension Distribution of Cosmic Rays Detected at the Pierre Auger Observatory

    Get PDF
    We present the results of searches for dipolar-type anisotropies in different energy ranges above 2.5×10172.5\times 10^{17} eV with the surface detector array of the Pierre Auger Observatory, reporting on both the phase and the amplitude measurements of the first harmonic modulation in the right-ascension distribution. Upper limits on the amplitudes are obtained, which provide the most stringent bounds at present, being below 2% at 99% C.L.C.L. for EeV energies. We also compare our results to those of previous experiments as well as with some theoretical expectations.Comment: 28 pages, 11 figure

    Synthetic biology to access and expand nature's chemical diversity

    Get PDF
    Bacterial genomes encode the biosynthetic potential to produce hundreds of thousands of complex molecules with diverse applications, from medicine to agriculture and materials. Accessing these natural products promises to reinvigorate drug discovery pipelines and provide novel routes to synthesize complex chemicals. The pathways leading to the production of these molecules often comprise dozens of genes spanning large areas of the genome and are controlled by complex regulatory networks with some of the most interesting molecules being produced by non-model organisms. In this Review, we discuss how advances in synthetic biology — including novel DNA construction technologies, the use of genetic parts for the precise control of expression and for synthetic regulatory circuits — and multiplexed genome engineering can be used to optimize the design and synthesis of pathways that produce natural products

    Influence of bio-based plasticizers on the properties of NBR materials

    Get PDF
    A high number of technical elastomer products contain plasticizers for tailoring material properties. Some additives used as plasticizers pose a health risk or have inadequate material properties. Therefore, research is going on in this field to find sustainable alternatives for conventional plasticizers. In this paper, two modified bio-based plasticizers (epoxidized esters of glycerol formal from soybean and canola oil) are of main interest. The study aimed to determine the influence of these sustainable plasticizers on the properties of acrylonitrile–butadiene rubber (NBR). For comparison, the influence of conventional plasticizers, e.g., treated distillate aromatic extract (TDAE) and Mesamoll¼ were additionally investigated. Two types of NBR with different ratios of monomers formed the polymeric basis of the prepared elastomers. The variation of the monomer ratio results in different polarities, and therefore, compatibility between the NBR and plasticizers should be influenced. The mechanical characteristics were investigated. In parallel, dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA) were performed and filler macro-dispersion was determined. Bio-based plasticizers were shown to have better mechanical and thermal properties compared to conventional plasticizers. Further, thermo-oxidative aging was realized for 500 h, and afterwards, mechanical characterizations were done. It was observed that bio-based plasticizers have almost the same aging properties compared to conventional plasticizers
    • 

    corecore