21 research outputs found
Phenotypic and molecular characterisation of CDK13-related congenital heart defects, dysmorphic facial features and intellectual developmental disorders
Background: De novo missense variants in CDK13 have been described as the cause of syndromic congenital heart defects in seven individuals ascertained from a large congenital cardiovascular malformations cohort. We aimed to further define the phenotypic and molecular spectrum of this newly described disorder.
Methods: To minimise ascertainment bias, we recruited nine additional individuals with CDK13 pathogenic variants from clinical and research exome laboratory sequencing cohorts. Each individual underwent dysmorphology exam and comprehensive medical history review.
Results: We demonstrate greater than expected phenotypic heterogeneity, including 33% (3/9) of individuals without structural heart disease on echocardiogram. There was a high penetrance for a unique constellation of facial dysmorphism and global developmental delay, as well as less frequently seen renal and sacral anomalies. Two individuals had novel CDK13 variants (p.Asn842Asp, p.Lys734Glu), while the remaining seven unrelated individuals had a recurrent, previously published p.Asn842Ser variant. Summary of all variants published to date demonstrates apparent restriction of pathogenic variants to the protein kinase domain with clustering in the ATP and magnesium binding sites.
Conclusions: Here we provide detailed phenotypic and molecular characterisation of individuals with pathogenic variants in CDK13 and propose management guidelines based upon the estimated prevalence of anomalies identified.
Keywords: CDK13, CHDFIDD, De novo variant, Neurodevelopmental disorders, Agenesis of the corpus callosum, Hypertelorism, Developmental delay, Cyclin-dependent kinase, Undiagnosed Diseases Networ
Fast assessment of long axis strain with standard cardiovascular magnetic resonance: a validation study of a novel parameter with reference values
Background: Assessment of longitudinal function with cardiovascular magnetic resonance (CMR) is limited to measurement of systolic excursion of the mitral annulus (MAPSE) or elaborate strain imaging modalities. The aim of this study was to develop a fast assessable parameter for the measurement of long axis strain (LAS) with CMR. Methods: 40 healthy volunteers and 125 patients with different forms of cardiomyopathy were retrospectively analyzed. Four different approaches for the assessment of LAS with CMR measuring the distance between the LV apex and a line connecting the origins of the mitral valve leaflets in enddiastole and endsystole were evaluated. Values for LAS were calculated according to the strain formula. Results: LAS derived from the distance of the epicardial apical border to the midpoint of the line connecting the mitral valve insertion points (LAS-epi/mid) proved to be the most reliable parameter for the assessment of LAS among the different approaches. LAS-epi/mid displayed the highest sensitivity (81.6 %) and specificity (97.5 %), furthermore showing the best correlation with feature tracking (FTI) derived transmural longitudinal strain (r = 0.85). Moreover, LAS-epi/mid was non-inferior to FTI in discriminating controls from patients (Area under the curve (AUC) = 0.95 vs. 0.94, p = NS). The time required for analysis of LAS-epi/mid was significantly shorter than for FTI (67 ± 8 s vs. 180 ± 14 s, p < 0.0001). Additionally, LAS-epi/mid performed significantly better than MAPSE (Delta AUC = 0.09; p < 0.005) and the ejection fraction (Delta AUC = 0.11; p = 0.0002). Reference values were derived from 234 selected healthy volunteers. Mean value for LAS-epi/mid was −17.1 ± 2.3 %. Mean values for men were significantly lower compared to women (−16.5 ± 2.2 vs. -17.9 ± 2.1 %; p < 0.0001), while LAS decreased with age. Conclusions: LAS-epi/mid is a novel and fast assessable parameter for the analysis of global longitudinal function with non-inferiority compared to transmural longitudinal strain
Assessment of Myocardial Contractile Function Using Global and Segmental Circumferential Strain following Intracoronary Stem Cell Infusion after Myocardial Infarction: MRI Feature Tracking Feasibility Study.
Background. Magnetic resonance imaging (MRI) strain analysis is a sensitive method to assess myocardial function. Our objective was to define the feasibility of MRI circumferential strain () analysis in assessing subtle changes in myocardial function following stem cell therapy. Methods and Results. Patients in the Amorcyte Phase I trial were randomly assigned to treatment with either autologous bone-marrow-derived stem cells infused into the infarct-related artery 5 to 11 days following primary PCI or control. MRI studies were obtained at baseline, 3, and 6 months. was measured in the short axis views at the base, mid and apical slices of the left ventricle (LV) for each patient (13 treatments and 10 controls). Mid-anterior LV improved between baseline 12 and 3 months 12, . There were no significant changes in at 3 months and 6 months compared to baseline for other segments. There was excellent intraobserver and interobserver agreement for basal and mid circumferential strain. Conclusion. MRI segmental strain analysis is feasible in assessment of regional myocardial function following cell therapy with excellent intra- and inter-observer variability's. Using this method, a modest interval change in segmental was detected in treatment group