271 research outputs found

    The ferroelectric transition in YMnO3_3 from first principles

    Full text link
    We have studied the structural phase transition of multiferroic YMnO3_3 from first principles. Using group-theoretical analysis and first-principles density functional calculations of the total energy and phonons, we perform a systematic study of the energy surface around the prototypic phase. We find a single instability at the zone-boundary which couples strongly to the polarization. This coupling is the mechanism that allows multiferroicity in this class of materials. Our results imply that YMnO3_3 is an improper ferroelectric. We suggest further experiments to clarify this point.Comment: published version, PRB (rapid comm), slight change in presentatio

    Experimental evidence for an intermediate phase in the multiferroic YMnO3

    Get PDF
    We have studied YMnO3_{3} by high-temperature synchrotron X-ray powder diffraction, and have carried out differential thermal analysis and dilatometry on a single crystal sample. These experiments show two phase transitions at about 1100K and 1350K, respectively. This demonstrates the existence of an intermediate phase between the room temperature ferroelectric and the high temperature centrosymmetric phase. This study identifies for the first time the different high-temperature phase transitions in YMnO3_{3}.Comment: 10 pages 5 figures. New version, Additional data, Journal of Physics: Condensed Matter, in Pres

    Note on a Micropolar Gas-Kinetic Theory

    Full text link
    The micropolar fluid mechanics and its transport coefficients are derived from the linearized Boltzmann equation of rotating particles. In the dilute limit, as expected, transport coefficients relating to microrotation are not important, but the results are useful for the description of collisional granular flow on an inclined slope. (This paper will be published in Traffic and Granular Flow 2001 edited by Y.Sugiyama and D. E. Wolf (Springer))Comment: 15 pages, 0 figure. To be published in Traffic and Granular Flow 2001 edited by Y.Sugiyama and D. E. Wolf (Springer

    The effect of weak inertia in rotating high-aspect-ratio vessel bioreactors

    Get PDF
    One method to grow artificial body tissue is to place a porous scaffold seeded with cells, known as a tissue construct, into a rotating bioreactor filled with a nutrient-rich fluid. The flow within the bioreactor is affected by the movement of the construct relative to the bioreactor which, in turn, is affected by the hydrodynamical and gravitational forces the construct experiences. The construct motion is thus coupled to the flow within the bioreactor. Over the timescale of a few hours, the construct appears to move in a periodic orbit but, over tens of hours, the construct drifts from periodicity. In the biological literature, this effect is often attributed to the change in density of the construct that occurs via tissue growth. In this paper, we show that weak inertia can cause the construct to drift from its periodic orbit over the same timescale as tissue growth. We consider the coupled flow and construct motion problem within a rotating high-aspect- ratio vessel bioreactor. Using an asymptotic analysis, we investigate the case where the Reynolds number is large but the geometry of the bioreactor yields a small reduced Reynolds number, resulting in a weak inertial effect. In particular, to accurately couple the bioreactor and porous flow regions, we extend the nested boundary layer analysis of Dalwadi et al. (J. Fluid Mech. vol. 798, pp. 88–139, 2016) to include moving walls and the thin region between the porous construct and the bioreactor wall. This allows us to derive a closed system of nonlinear ordinary differential equations for the construct trajectory, from which we show that neglecting inertia results in periodic orbits; we solve the inertia-free problem analytically, calculating the periodic orbits in terms of the system parameters. Using a multiple-scale analysis, we then systematically derive a simpler system of nonlinear ordinary differential equations that describe the long-time drift of the construct due to the effect of weak inertia. We investigate the bifurcations of the construct trajectory behaviour, and the limit cycles that appear when the construct is less dense than the surrounding fluid and the rotation rate is large enough. Thus, we are able to predict when the tissue construct will drift towards a stable limit cycle within the bioreactor and when it will drift out until it hits the bioreactor edg

    The Recombinases Rad51 and Dmc1 Play Distinct Roles in DNA Break Repair and Recombination Partner Choice in the Meiosis of Tetrahymena

    Get PDF
    Repair of programmed DNA double-strand breaks (DSBs) by meiotic recombination relies on the generation of flanking 3â€Č single-stranded DNA overhangs and their interaction with a homologous double-stranded DNA template. In various common model organisms, the ubiquitous strand exchange protein Rad51 and its meiosis-specific homologue Dmc1 have been implicated in the joint promotion of DNA–strand exchange at meiotic recombination sites. However, the division of labor between these two recombinases is still a puzzle. Using RNAi and gene-disruption experiments, we have studied their roles in meiotic recombination and chromosome pairing in the ciliated protist Tetrahymena as an evolutionarily distant meiotic model. Cytological and electrophoresis-based assays for DSBs revealed that, without Rad51p, DSBs were not repaired. However, in the absence of Dmc1p, efficient Rad51p-dependent repair took place, but crossing over was suppressed. Immunostaining and protein tagging demonstrated that only Dmc1p formed strong DSB–dependent foci on meiotic chromatin, whereas the distribution of Rad51p was diffuse within nuclei. This suggests that meiotic nucleoprotein filaments consist primarily of Dmc1p. Moreover, a proximity ligation assay confirmed that little if any Rad51p forms mixed nucleoprotein filaments with Dmc1p. Dmc1p focus formation was independent of the presence of Rad51p. The absence of Dmc1p did not result in compensatory assembly of Rad51p repair foci, and even artificial DNA damage by UV failed to induce Rad51p foci in meiotic nuclei, while it did so in somatic nuclei within one and the same cell. The observed interhomologue repair deficit in dmc1Δ meiosis is consistent with a requirement for Dmc1p in promoting the homologue as the preferred recombination partner. We propose that relatively short and/or transient Rad51p nucleoprotein filaments are sufficient for intrachromosomal recombination, whereas long nucleoprotein filaments consisting primarily of Dmc1p are required for interhomolog recombination

    Bone-Induced Expression of Integrin ÎČ3 Enables Targeted Nanotherapy of Breast Cancer Metastases

    Get PDF
    Bone metastases occur in approximately 70% of metastatic breast cancer patients, often leading to skeletal injuries. Current treatments are mainly palliative and underscore the unmet clinical need for improved therapies. In this study, we provide preclinical evidence for an antimetastatic therapy based on targeting integrin ÎČ3 (ÎČ3), which is selectively induced on breast cancer cells in bone by the local bone microenvironment. In a preclinical model of breast cancer, ÎČ3 was strongly expressed on bone metastatic cancer cells, but not primary mammary tumors or visceral metastases. In tumor tissue from breast cancer patients, ÎČ3 was significantly elevated on bone metastases relative to primary tumors from the same patient (n = 42). Mechanistic investigations revealed that TGFÎČ signaling through SMAD2/SMAD3 was necessary for breast cancer induction of ÎČ3 within the bone. Using a micelle-based nanoparticle therapy that recognizes integrin αvÎČ3 (αvÎČ3-MPs of ∌12.5 nm), we demonstrated specific localization to breast cancer bone metastases in mice. Using this system for targeted delivery of the chemotherapeutic docetaxel, we showed that bone tumor burden could be reduced significantly with less bone destruction and less hepatotoxicity compared with equimolar doses of free docetaxel. Furthermore, mice treated with αvÎČ3-MP-docetaxel exhibited a significant decrease in bone-residing tumor cell proliferation compared with free docetaxel. Taken together, our results offer preclinical proof of concept for a method to enhance delivery of chemotherapeutics to breast cancer cells within the bone by exploiting their selective expression of integrin αvÎČ3 at that metastatic site

    AUG_hairpin: prediction of a downstream secondary structure influencing the recognition of a translation start site

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The translation start site plays an important role in the control of translation efficiency of eukaryotic mRNAs. The recognition of the start AUG codon by eukaryotic ribosomes is considered to depend on its nucleotide context. However, the fraction of eukaryotic mRNAs with the start codon in a suboptimal context is relatively large. It may be expected that mRNA should possess some features providing efficient translation, including the proper recognition of a translation start site. It has been experimentally shown that a downstream hairpin located in certain positions with respect to start codon can compensate in part for the suboptimal AUG context and also increases translation from non-AUG initiation codons. Prediction of such a compensatory hairpin may be useful in the evaluation of eukaryotic mRNA translation properties.</p> <p>Results</p> <p>We evaluated interdependency between the start codon context and mRNA secondary structure at the CDS beginning: it was found that a suboptimal start codon context significantly correlated with higher base pairing probabilities at positions 13 – 17 of CDS of human and mouse mRNAs. It is likely that the downstream hairpins are used to enhance translation of some mammalian mRNAs <it>in vivo</it>. Thus, we have developed a tool, <it>AUG_hairpin</it>, to predict local stem-loop structures located within the defined region at the beginning of mRNA coding part. The implemented algorithm is based on the available published experimental data on the CDS-located stem-loop structures influencing the recognition of upstream start codons.</p> <p>Conclusion</p> <p>An occurrence of a potential secondary structure downstream of start AUG codon in a suboptimal context (or downstream of a potential non-AUG start codon) may provide researchers with a testable assumption on the presence of additional regulatory signal influencing mRNA translation initiation rate and the start codon choice. <it>AUG_hairpin</it>, which has a convenient Web-interface with adjustable parameters, will make such an evaluation easy and efficient.</p

    1Identification of genes differentially expressed in the embryonic pig cerebral cortex before and after appearance of gyration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mammalian evolution is characterized by a progressive expansion of the surface area of the cerebral cortex, an increase that is accompanied by gyration of the cortical surface. The mechanisms controlling this gyration process are not well characterized but mutational analyses indicate that genes involved in neuronal migration play an important function. Due to the lack of gyration of the rodent brain it is important to establish alternative models to examine brain development during the gyration process. The pig brain is gyrated and accordingly is a candidate alternative model.</p> <p>Findings</p> <p>In this study we have identified genes differentially expressed in the pig cerebral cortex before and after appearance of gyration. Pig cortical tissue from two time points in development representing a non-folded, lissencephalic, brain (embryonic day 60) and primary-folded, gyrencephalic, brain (embryonic day 80) were examined by whole genome expression microarray studies. 91 differentially expressed transcripts (fold change >3) were identified. 84 transcripts were annotated and encoding proteins involved in for example neuronal migration, calcium binding, and cytoskeletal structuring. Quantitative real-time PCR was used to confirm the regulation of a subset of the identified genes.</p> <p>Conclusion</p> <p>This study provides identification of genes which are differentially expressed in the pig cerebral cortex before and after appearance of brain gyration. The identified genes include novel candidate genes which could have functional importance for brain development.</p
    • 

    corecore