471 research outputs found
Processing Color in Astronomical Imagery
Every year, hundreds of images from telescopes on the ground and in space are
released to the public, making their way into popular culture through
everything from computer screens to postage stamps. These images span the
entire electromagnetic spectrum from radio waves to infrared light to X-rays
and gamma rays, a majority of which is undetectable to the human eye without
technology. Once these data are collected, one or more specialists must process
the data to create an image. Therefore, the creation of astronomical imagery
involves a series of choices. How do these choices affect the comprehension of
the science behind the images? What is the best way to represent data to a
non-expert? Should these choices be based on aesthetics, scientific veracity,
or is it possible to satisfy both? This paper reviews just one choice out of
the many made by astronomical image processors: color. The choice of color is
one of the most fundamental when creating an image taken with modern
telescopes. We briefly explore the concept of the image as translation,
particularly in the case of astronomical images from invisible portions of the
electromagnetic spectrum. After placing modern astronomical imagery and
photography in general in the context of its historical beginnings, we review
the standards (or lack thereof) in making the basic choice of color. We discuss
the possible implications for selecting one color palette over another in the
context of the appropriateness of using these images as science communication
products with a specific focus on how the non-expert perceives these images and
how that affects their trust in science. Finally, we share new data sets that
begin to look at these issues in scholarly research and discuss the need for a
more robust examination of this and other related topics in the future to
better understand the implications for science communications.Comment: 10 pages, 6 figures, published in Studies in Media and Communicatio
Understanding visual map formation through vortex dynamics of spin Hamiltonian models
The pattern formation in orientation and ocular dominance columns is one of
the most investigated problems in the brain. From a known cortical structure,
we build spin-like Hamiltonian models with long-range interactions of the
Mexican hat type. These Hamiltonian models allow a coherent interpretation of
the diverse phenomena in the visual map formation with the help of relaxation
dynamics of spin systems. In particular, we explain various phenomena of
self-organization in orientation and ocular dominance map formation including
the pinwheel annihilation and its dependency on the columnar wave vector and
boundary conditions.Comment: 4 pages, 15 figure
Emerging roles of the single EF-hand Ca<sup>2+</sup> sensor tescalcin in the regulation of gene expression, cell growth and differentiation
© 2016. Published by The Company of Biologists Ltd.Tescalcin (TESC, also known as calcineurin-homologous protein 3, CHP3) is a 24-kDa EF-hand Ca2+-binding protein that has recently emerged as a regulator of cell differentiation and growth. The TESC gene has also been linked to human brain abnormalities, and high expression of tescalcin has been found in several cancers. The expression level of tescalcin changes dramatically during development and upon signal-induced cell differentiation. Recent studies have shown that tescalcin is not only subjected to up- or down-regulation, but also has an active role in pathways that drive cell growth and differentiation programs. At the molecular level, there is compelling experimental evidence showing that tescalcin can directly interact with and regulate the activities of the Na+/H+ exchanger NHE1, subunit 4 of the COP9 signalosome (CSN4) and protein kinase glycogen-synthase kinase 3 (GSK3). In hematopoetic precursor cells, tescalcin has been shown to couple activation of the extracellular signal-regulated kinase (ERK) cascade to the expression of transcription factors that control cell differentiation. The purpose of thisCommentary is to summarize recent efforts that have served to characterize the biochemical, genetic and physiological attributes of tescalcin, and its unique role in the regulation of various cellular functions
The Hubble Space Telescope Treasury Program on the Orion Nebula Cluster
The Hubble Space Telescope (HST) Treasury Program on the Orion Nebula Cluster
has used 104 orbits of HST time to image the Great Orion Nebula region with the
Advanced Camera for Surveys (ACS), the Wide-Field/Planetary Camera 2 (WFPC2)
and the Near Infrared Camera and Multi Object Spectrograph (NICMOS) instruments
in 11 filters ranging from the U-band to the H-band equivalent of HST. The
program has been intended to perform the definitive study of the stellar
component of the ONC at visible wavelengths, addressing key questions like the
cluster IMF, age spread, mass accretion, binarity and cirumstellar disk
evolution. The scanning pattern allowed to cover a contiguous field of
approximately 600 square arcminutes with both ACS and WFPC2, with a typical
exposure time of approximately 11 minutes per ACS filter, corresponding to a
point source depth AB(F435W) = 25.8 and AB(F775W)=25.2 with 0.2 magnitudes of
photometric error. We describe the observations, data reduction and data
products, including images, source catalogs and tools for quick look preview.
In particular, we provide ACS photometry for 3399 stars, most of them detected
at multiple epochs, WFPC2 photometry for 1643 stars, 1021 of them detected in
the U-band, and NICMOS JH photometry for 2116 stars. We summarize the early
science results that have been presented in a number of papers. The final set
of images and the photometric catalogs are publicly available through the
archive as High Level Science Products at the STScI Multimission Archive hosted
by the Space Telescope Science Institute.Comment: Accepted for publication on the Astrophysical Journal Supplement
Series, March 27, 201
Personalised service? Changing the role of the government librarian
Investigates the feasibility of personalised information service in a government department. A qualitative methodology explored stakeholder opinions on the remit, marketing, resourcing and measurement of the service. A questionnaire and interviews gathered experiences of personalised provision across the government sector. Potential users were similarly surveyed to discuss how the service could meet their needs. Data were analysed using coding techniques to identify emerging theory. Lessons learned from government librarians centred on clarifying requirements, balancing workloads and selective marketing. The user survey showed low usage and awareness of existing specialist services, but high levels of need and interest in services repackaged as a tailored offering. Fieldwork confirmed findings from the literature on the scope for adding value through information management advice, information skills training and substantive research assistance and the need to understand business processes and develop effective partnerships. Concluding recommendations focus on service definition, strategic marketing, resource utilisation and performance measurement
Coordinated optimization of visual cortical maps (I) Symmetry-based analysis
In the primary visual cortex of primates and carnivores, functional
architecture can be characterized by maps of various stimulus features such as
orientation preference (OP), ocular dominance (OD), and spatial frequency. It
is a long-standing question in theoretical neuroscience whether the observed
maps should be interpreted as optima of a specific energy functional that
summarizes the design principles of cortical functional architecture. A
rigorous evaluation of this optimization hypothesis is particularly demanded by
recent evidence that the functional architecture of OP columns precisely
follows species invariant quantitative laws. Because it would be desirable to
infer the form of such an optimization principle from the biological data, the
optimization approach to explain cortical functional architecture raises the
following questions: i) What are the genuine ground states of candidate energy
functionals and how can they be calculated with precision and rigor? ii) How do
differences in candidate optimization principles impact on the predicted map
structure and conversely what can be learned about an hypothetical underlying
optimization principle from observations on map structure? iii) Is there a way
to analyze the coordinated organization of cortical maps predicted by
optimization principles in general? To answer these questions we developed a
general dynamical systems approach to the combined optimization of visual
cortical maps of OP and another scalar feature such as OD or spatial frequency
preference.Comment: 90 pages, 16 figure
On the Black-Hole/Qubit Correspondence
The entanglement classification of four qubits is related to the extremal
black holes of the 4-dimensional STU model via a time-like reduction to three
dimensions. This correspondence is generalised to the entanglement
classification of a very special four-way entanglement of eight qubits and the
black holes of the maximally supersymmetric N = 8 and exceptional magic N = 2
supergravity theories.Comment: 32 pages, very minor changes at the start of Sec. 4.1. Version to
appear in The European Physical Journal - Plu
- …