11 research outputs found

    An experimental study of cathodic protection for chloride contaminated reinforced concrete

    Get PDF
    Cathodic protection (CP) is being increasingly used on reinforced concrete structures to protect steel reinforcing bars from corrosion in aggressive conditions. Due to the complexity of environmental conditions, the design specifications in national and international standards are still open to discussion to achieve both sufficient and efficient protection for reinforced concrete structures in engineering practices. This paper reports an experimental research to investigate the influence of chloride content on concrete resistivity, rebar corrosion rate and the performance of CP operation using different current densities. It aims to understand the correlation between the chloride content and concrete resistivity together with the CP current requirement, and to investigate the precision of the CP design criteria in standards

    In situ investigation of phosphonate retarder interaction in oil well cements at elevated temperature and pressure conditions

    No full text
    The effect of a high-performance retarding additive in oil well cements was investigated under elevated temperature (165°C) and pressure (1000 psi) conditions via in situ synchrotron-based X-ray diffraction (XRD) and quasielastic neutron scattering (QENS) techniques. Under these temperature and pressure conditions, crystalline calcium silicate hydrates (C–S–H) are formed through the cement hydration process. From in situ XRD experiments, the retardation effect was observed by a change in the rate of the appearance of 11 Å tobermorites as well as a change in the rate of the α-C2SH generation and depletion. QENS analysis revealed that the retardation effect was related to the non-conversion of free water to chemical and constrained water components. A high presence of free water components was attributed to a decrease in 11 Å tobermorites along with slower consumption of the quartz and portlandite phases. Furthermore, QENS results infer that the water molecules experienced confinement in the restricted pore spaces. The retarder inhibited this initial water confinement by slowing the bulk diffusion of free water in the confined region

    In situ investigation of phosphonate retarder interaction in oil well cements at elevated temperature and pressure conditions

    No full text
    The effect of a high-performance retarding additive in oil well cements was investigated under elevated temperature (165°C) and pressure (1000 psi) conditions via in situ synchrotron-based X-ray diffraction (XRD) and quasielastic neutron scattering (QENS) techniques. Under these temperature and pressure conditions, crystalline calcium silicate hydrates (C–S–H) are formed through the cement hydration process. From in situ XRD experiments, the retardation effect was observed by a change in the rate of the appearance of 11 Å tobermorites as well as a change in the rate of the α-C2SH generation and depletion. QENS analysis revealed that the retardation effect was related to the non-conversion of free water to chemical and constrained water components. A high presence of free water components was attributed to a decrease in 11 Å tobermorites along with slower consumption of the quartz and portlandite phases. Furthermore, QENS results infer that the water molecules experienced confinement in the restricted pore spaces. The retarder inhibited this initial water confinement by slowing the bulk diffusion of free water in the confined region
    corecore