751 research outputs found
Kalibrace modelu pro optimalizaci systému vytápění a chlazení s akumulací energie do spodní vody
Building performance simulation (BPS) is a powerful tool to support building and system designers in emulating how orientation, building type, HVAC system etc. interacts the overall building performance. Currently BPS is used only for code compliance in the detailed design, neither to make informed choices between different design options nor for building and/ or system optimization [Wilde, 2004].BPS could/ should be used in a way of indicating design solutions, introducing an uncertainty and sensitivity analysis and building and/ or system optimization. This research is about enhancing the use of BPS in the detailed design by supporting design and system optimization
General splicing factor SF2/ASF promotes alternative splicing by binding to an exonic splicing enhancer
The general splicing factor SF2/ASF binds in a sequence-specific manner to a purine-rich exonic splicing enhancer (ESE) in the last exon of bovine growth hormone (bGH) pre-mRNA. More importantly, SF2/ASF stimulates in vitro splicing of bGH intron D through specific interaction with the ESE sequences. However, another general splicing factor, SC35, does not bind the ESE sequences and has no effect on bGH intron D splicing. Thus, one possible function of SF2/ASF in alternative and, perhaps, constitutive pre-mRNA splicing is to recognize ESE sequences. The stimulation of bGH intron D splicing by SF2/ASF is counteracted by the addition of hnRNP A1. The relative levels of SF2/ASF and hnRNP A1 influence the efficiency of bGH intron D splicing in vitro and may be the underlying mechanism of this alternative pre-mRNA processing event in vivo
RNA splicing at human immunodeficiency virus type 1 3 ' splice site A2 is regulated by binding of hnRNP A/B proteins to an exonic splicing silencer element
The synthesis of human immunodeficiency virus type 1 (HIV-1) mRNAs is a complex process by which more than 30 different mRNA species are produced by alternative splicing of a single primary RNA transcript. HIV-1 splice sites are used with significantly different efficiencies, resulting in different levels of mRNA species in infected cells. Splicing of Tat mRNA, which is present at relatively low levels in infected cells, is repressed by the presence of exonic splicing silencers (ESS) within the two tat coding exons (ESS2 and ESS3). These ESS elements contain the consensus sequence PyUAG. Here we show that the efficiency of splicing at 3 ' splice site A2, which is used to generate Vpr mRNA, is also regulated by the presence of an ESS (ESSV), which has sequence homology to ESS2 and ESS3. Mutagenesis of the three PyUAG motifs within ESSV increases splicing at splice site A2, resulting in increased Vpr mRNA levels and reduced skipping of the noncoding exon flanked by A2 and D3. The increase in Vpr mRNA levels and the reduced skipping also occur when splice site D3 is mutated toward the consensus sequence. By in vitro splicing assays, we show that ESSV represses splicing when placed downstream of a heterologous splice site. A1, A1(B), A2, and B1 hnRNPs preferentially bind to ESSV RNA compared to ESSV mutant RNA. Each of these proteins, when added back to HeLa cell nuclear extracts depleted of ESSV-binding factors, is able to restore splicing repression. The results suggest that coordinate repression of HIV-1 RNA splicing is mediated by members of the hnRNP A/B protein family
Influence of Mo on the Fe:Mo:C nano-catalyst thermodynamics for single-walled carbon nanotube growth
We explore the role of Mo in Fe:Mo nanocatalyst thermodynamics for
low-temperature chemical vapor deposition growth of single walled carbon
nanotubes (SWCNTs). By using the size-pressure approximation and ab initio
modeling, we prove that for both Fe-rich (~80% Fe or more) and Mo-rich (~50% Mo
or more) Fe:Mo clusters, the presence of carbon in the cluster causes
nucleation of Mo2C. This enhances the activity of the particle since it
releases Fe, which is initially bound in a stable Fe:Mo phase, so that it can
catalyze SWCNT growth. Furthermore, the presence of small concentrations of Mo
reduce the lower size limit of low-temperature steady-state growth from ~0.58nm
for pure Fe particles to ~0.52nm. Our ab initio-thermodynamic modeling explains
experimental results and establishes a new direction to search for better
catalysts.Comment: 7 pages, 3 figures. submitte
Motor neuron cell-nonautonomous rescue of spinal muscular atrophy phenotypes in mild and severe transgenic mouse models
Survival of motor neuron (SMN) deficiency causes spinal muscular atrophy (SMA), but the pathogenesis mechanisms remain elusive. Restoring SMN in motor neurons only partially rescues SMA in mouse models, although it is thought to be therapeutically essential. Here, we address the relative importance of SMN restoration in the central nervous system (CNS) versus peripheral tissues in mouse models using a therapeutic splice-switching antisense oligonucleotide to restore SMN and a complementary decoy oligonucleotide to neutralize its effects in the CNS. Increasing SMN exclusively in peripheral tissues completely rescued necrosis in mild SMA mice and robustly extended survival in severe SMA mice, with significant improvements in vulnerable tissues and motor function. Our data demonstrate a critical role of peripheral pathology in the mortality of SMA mice and indicate that peripheral SMN restoration compensates for its deficiency in the CNS and preserves motor neurons. Thus, SMA is not a cell-autonomous defect of motor neurons in SMA mice
Crystal structure of the two-RRM domain of hnRNP A1 (UP1) complexed with single-stranded telomeric DNA
Human hnRNP A1 is a versatile single-stranded nucleic acid-binding protein that functions in various aspects of mRNA maturation and in telomere length regulation. The crystal structure of UP1, the amino-terminal domain of human hnRNP A1 containing two RNA-recognition motifs (RRMs), bound to a 12-nucleotide single-stranded telomeric DNA has been determined at 2.1 Angstrom resolution. The structure of the complex reveals the basis for sequence-specific recognition of the single-stranded overhangs of human telomeres by hnRNP A1. It also provides insights into the basis for high-affinity binding of hnRNP A1 to certain RNA sequences, and for nucleic acid binding and functional synergy between the RRMs. In the crystal structure, a UP1 dimer binds to two strands of DNA, and each strand contacts RRM1 of one monomer and RRM2 of the other. The two DNA strands are antiparallel, and regions of the protein flanking each RRM make important contacts with DNA. The extensive protein-protein interface seen in the crystal structure of the protein-DNA complex and the evolutionary conservation of the interface residues suggest the importance of specific protein-protein interactions for the sequence-specific recognition of single-stranded nucleic acids. Models for regular packaging of telomere 3' overhangs and for juxtaposition of alternative 5' splice sites are proposed
Semiconductor saturable absorber mirror structures with low saturation fluence
We present two novel semiconductor saturable absorber mirror (SESAM) designs which can exhibit more than ten times lower saturation fluence than classical SESAM devices. Design considerations and characterization data are presented. These devices are particularly suited for passively mode-locked lasers with ultra-high repetition rate
TSUNAMI: an antisense method to phenocopy splicing-associated diseases in animals
Antisense oligonucleotides (ASOs) are versatile molecules that can be designed to specifically alter splicing patterns of target pre-mRNAs. Here we exploit this feature to phenocopy a genetic disease. Spinal muscular atrophy (SMA) is a motor neuron disease caused by loss-of-function mutations in the SMN1 gene. The related SMN2 gene expresses suboptimal levels of functional SMN protein due to alternative splicing that skips exon 7; correcting this defect-e.g., with ASOs-is a promising therapeutic approach. We describe the use of ASOs that exacerbate SMN2 missplicing and phenocopy SMA in a dose-dependent manner when administered to transgenic Smn(-/-) mice. Intracerebroventricular ASO injection in neonatal mice recapitulates SMA-like progressive motor dysfunction, growth impairment, and shortened life span, with alpha-motor neuron loss and abnormal neuromuscular junctions. These SMA-like phenotypes are prevented by a therapeutic ASO that restores correct SMN2 splicing. We uncovered starvation-induced splicing changes, particularly in SMN2, which likely accelerate disease progression. These results constitute proof of principle that ASOs designed to cause sustained splicing defects can be used to induce pathogenesis and rapidly and accurately model splicing-associated diseases in animals. This approach allows the dissection of pathogenesis mechanisms, including spatial and temporal features of disease onset and progression, as well as testing of candidate therapeutics
Evidence that Myb-related CDC5 proteins are required for pre-mRNA splicing
The conserved CDC5 family of Myb-related proteins performs an essential function in cell cycle control at G(2)/M. Although c-Myb and many Myb-related proteins act as transcription factors, herein, we implicate CDC5 proteins in pre-mRNA splicing. Mammalian CDC5 colocalizes with pre-mRNA splicing factors in the nuclei of mammalian cells, associates with core components of the splicing machinery in nuclear extracts, and interacts with the spliceosome throughout the splicing reaction in vitro. Furthermore, genetic depletion of the homolog of CDC5 in Saccharomyces cerevisiae, CEF1. blocks the first step of pre-mRNA processing in vivo. These data provide evidence that eukaryotic cells require CDC5 proteins for pre-mRNA splicing
- …