706 research outputs found

    Barrier transmission for the one-dimensional nonlinear Schr\"odinger equation: resonances and transmission profiles

    Full text link
    The stationary nonlinear Schr\"odinger equation (or Gross-Pitaevskii equation) for one-dimensional potential scattering is studied. The nonlinear transmission function shows a distorted profile, which differs from the Lorentzian one found in the linear case. This nonlinear profile function is analyzed and related to Siegert type complex resonances. It is shown, that the characteristic nonlinear profile function can be conveniently described in terms of skeleton functions depending on a few instructive parameters. These skeleton functions also determine the decay behavior of the underlying resonance state. Furthermore we extend the Siegert method for calculating resonances, which provides a convenient recipe for calculating nonlinear resonances. Applications to a double Gaussian barrier and a square well potential illustrate our analysis.Comment: 9 pages, 6 figures, 1 tabl

    Resonance solutions of the nonlinear Schr\"odinger equation in an open double-well potential

    Full text link
    The resonance states and the decay dynamics of the nonlinear Schr\"odinger (or Gross-Pitaevskii) equation are studied for a simple, however flexible model system, the double delta-shell potential. This model allows analytical solutions and provides insight into the influence of the nonlinearity on the decay dynamics. The bifurcation scenario of the resonance states is discussed, as well as their dynamical stability properties. A discrete approximation using a biorthogonal basis is suggested which allows an accurate description even for only two basis states in terms of a nonlinear, nonhermitian matrix problem.Comment: 21 pages, 14 figure

    Barrier transmission for the Nonlinear Schr\"odinger Equation: Surprises of nonlinear transport

    Full text link
    In this communication we report on a peculiar property of barrier transmission that systems governed by the nonlinear Schroedinger equation share with the linear one: For unit transmission the potential can be divided at an arbitrary point into two sub-potentials, a left and a right one, which have exactly the same transmission. This is a rare case of an exact property of a nonlinear wave function which will be of interest, e.g., for studies of coherent transport of Bose-Einstein condensates through mesoscopic waveguideComment: 7 pages, 2 figure

    Nonlinear resonant tunneling of Bose-Einstein condensates in tilted optical lattices

    Full text link
    We study the tunneling decay of a Bose-Einstein condensate out of tilted optical lattices within the mean-field approximation. We introduce a novel method to calculate also excited resonance eigenstates of the Gross-Pitaevskii equation, based on a grid relaxation procedure with complex absorbing potentials. This algorithm works efficiently in a wide range of parameters where established methods fail. It allows us to study the effects of the nonlinearity in detail in the regime of resonant tunneling, where the decay rate is enhanced by resonant coupling to excited unstable states.Comment: Revised and enlarged version, including 1 additional figur

    Hamiltonian chaos in a coupled BEC -- optomechanical cavity system

    Full text link
    We study a hybrid optomechanical system consisting of a Bose-Einstein condensate (BEC) trapped inside a single-mode optical cavity with a moving end-mirror. The intracavity light field has a dual role: it excites a momentum side-mode of the condensate, and acts as a nonlinear spring that couples the vibrating mirror to that collective density excitation. We present the dynamics in a regime where the intracavity optical field, the mirror, and the side-mode excitation all display bistable behavior. In this regime we find that the dynamics of the system exhibits Hamiltonian chaos for appropriate initial conditions.Comment: 5 figure

    A purely reflective large wide-field telescope

    Full text link
    Two versions of a fast, purely reflective Paul-Baker type telescope are discussed, each with an 8.4-m aperture, 3 deg diameter flat field and f/1.25 focal ratio. The first version is based on a common, even asphere type of surface with zero conic constant. The primary and tertiary mirrors are 6th order aspheres, while the secondary mirror is an 8th order asphere (referred to here for brevity, as the 6/8/6 configuration). The D_80 diameter of a star image varies from 0''.18 on the optical axis up to 0''.27 at the edge of the field (9.3-13.5 mcm). The second version of the telescope is based on a polysag surface type which uses a polynomial expansion in the sag z, r^2 = 2R_0z - (1+b)z^2 + a_3 z^3 + a_4 z^4 + ... + a_N z^N, instead of the common form of an aspheric surface. This approach results in somewhat better images, with D_80 ranging from 0''.16 to 0''.23, using a lower-order 3/4/3 combination of powers for the mirror surfaces. An additional example with 3.5-m aperture, 3.5 deg diameter flat field, and f/1.25 focal ratio featuring near-diffraction-limited image quality is also presented.Comment: 14 pages, 6 figures; new examples adde

    Kicked Bose-Hubbard systems and kicked tops -- destruction and stimulation of tunneling

    Get PDF
    In a two-mode approximation, Bose-Einstein condensates (BEC) in a double-well potential can be described by a many particle Hamiltonian of Bose-Hubbard type. We focus on such a BEC whose interatomic interaction strength is modulated periodically by δ\delta-kicks which represents a realization of a kicked top. In the (classical) mean-field approximation it provides a rich mixed phase space dynamics with regular and chaotic regions. By increasing the kick-strength a bifurcation leads to the appearance of self-trapping states localized on regular islands. This self-trapping is also found for the many particle system, however in general suppressed by coherent many particle tunneling oscillations. The tunneling time can be calculated from the quasi-energy splitting of the corresponding Floquet states. By varying the kick-strength these quasi-energy levels undergo both avoided and even actual crossings. Therefore stimulation or complete destruction of tunneling can be observed for this many particle system

    Interaction-induced decoherence in non-Hermitian quantum walks of ultracold Bosons

    Full text link
    We study the influence of particle interaction on a quantum walk on a bipartite one-dimensional lattice with decay from every second site. The corresponding non-interacting (linear) system has been shown to have a topological transition described by the average displacement before decay. Here we use this topological quantity to distinguish coherent quantum dynamics from incoherent classical dynamics caused by a breaking of the translational symmetry. We furthermore analyze the behavior by means of a rate equation providing a quantitative description of the incoherent nonlinear dynamics.Comment: Revised and extended version, 5 pages, 5 figure

    Evidence for a Single-Spin Azimuthal Asymmetry in Semi-inclusive Pion Electroproduction

    Get PDF
    Single-spin asymmetries for semi-inclusive pion production in deep-inelastic scattering have been measured for the first time. A significant target-spin asymmetry of the distribution in the azimuthal angle φ of the pion relative to the lepton scattering plane was formed for π^+ electroproduction on a longitudinally polarized hydrogen target. The corresponding analyzing power in the sinφ moment of the cross section is 0.022±0.005±0.003. This result can be interpreted as the effect of terms in the cross section involving chiral-odd spin distribution functions in combination with a chiral-odd fragmentation function that is sensitive to the transverse polarization of the fragmenting quark
    • …
    corecore