443 research outputs found

    Sistema de administración de fármacos autoemulsionante: una estrategia para mejorar la biodisponibilidad oral

    Get PDF
    Objetivo: La vía oral siempre ha sido la ruta preferida de administración de fármacos en muchas enfermedades y hasta hoy es la primera forma investigada en el desarrollo de nuevas formas de dosificación. El principal problema en las formulaciones de fármacos orales es la baja y errática biodisponibilidad, lo que resulta fundamentalmente por la escasa solubilidad en agua, con lo que plantean problemas en su formulación. Para la administración terapéutica de los grupos activos lipófilos (BCS clase II drogas), las formulaciones a base de lípidos están teniendo cada vez más atención. Métodos: Con ese objetivo, a partir de los sitios web de PubMed, HCAplus, Thomson, y sus registros se utilizaron como fuentes principales para llevar a cabo la búsqueda de los artículos de investigación más importantes publicados sobre el tema. A continuación, la información fue analizada cuidadosamente, poniendo de relieve los resultados más importantes en la formulación y desarrollo de sistemas de administración de fármacos auto-emulsionante micro, así como su actividad terapéutica. Resultados: El sistema de administración de fármacos autoemulsionante (SMEDDS) ha ganado más atención debido a la mejorada que permite la reducción de la biodisponibilidad oral en dosis, los perfiles temporales más consistentes de la absorción del fármaco, la orientación selectiva de fármaco (s) hacia la ventana de absorción específica en el tracto gastrointestinal, y la protección del fármaco (s) desde el entorno poco receptivo en el intestino. Conclusiones: Este artículo proporciona una visión completa de SMEDDS como un enfoque prometedor para abordar eficazmente el problema de moléculas poco solubles.Aim: Oral route has always been the favorite route of drug administration in many diseases and till today it is the first way investigated in the development of new dosage forms. The major problem in oral drug formulations is low and erratic bioavailability, which mainly results from poor aqueous solubility, thereby pose problems in their formulation. For the therapeutic delivery of lipophilic active moieties (BCS class II drugs), lipid based formulations are inviting increasing attention. Methods: To that aim, from the web sites of PubMed, HCAplus, Thomson, and Registry were used as the main sources to perform the search for the most significant research articles published on the subject. The information was then carefully analyzed, highlighting the most important results in the formulation and development of self-micro emulsifying drug delivery systems as well as its therapeutic activity. Results: Self-emulsifying drug delivery system (SMEDDS) has gained more attention due to enhanced oral bio-availability enabling reduction in dose, more consistent temporal profiles of drug absorption, selective targeting of drug(s) toward specific absorption window in GIT, and protection of drug(s) from the unreceptive environment in gut. Conclusions: This article gives a complete overview of SMEDDS as a promising approach to effectively deal with the problem of poorly soluble molecules

    Antibacterial effect of a fluoride-containing ZnO/CuO nanocomposite

    Get PDF
    © 2019 Elsevier B.V. Dental materials that are antimicrobial and acid-resistant can inhibit bacterial colonization and demineralization, thereby preventing caries. Zinc and copper are well-known for their antibacterial effect, as is nanostructured ZnO–CuO composite. Minerals such as fluorine and calcium, can remineralize and demineralize teeth. Therefore, we developed novel fluoride-containing ZnO–CuO (ZCF) nanocomposites; to the best of our knowledge, these are the first nanocomposites of this kind. The fluoride concentrations and antibacterial effects of the ZCF nanocomposites were evaluated. Nanocomposites comprising zinc and copper (ZC), and zinc, copper, and fluorine (ZCF), were prepared by a simple one-step homogeneous coprecipitation method at a low temperature (80 °C), without the use of organic solvent or surfactant. The structure and composition of the ZC and ZCF nanocomposites were examined by scanning electron microscopy–energy-dispersive spectroscopy (SEM-EDS). Quantitative analysis of the mass concentration was performed by using ZAF correction methods. The fluorine content in nanocomposites was evaluated by using proton-induced gamma emission (PIGE) at the Takasaki Advanced Radiation Research Institute in Japan. By using 96-well microtiter plates, we analyzed the antibiotic susceptibility of ZC, ZCF, and the control buffer (phosphate-buffered saline) with Streptococcus mutans (ATCC 25175). The SEM images showed that ZC and ZCF nanocomposites were composed of 3D flower-like microstructures with diameters of approximately 1 μm. Environmental SEM-EDS analysis revealed that ZC contained 43.2% Cu, 55.1% Zn, 2.2% F, and 0.1% Cl, whereas ZCF contained 47.5% Cu, 40.5% Zn, 6.7% F, and 5.9% Cl. Analysis by PIGE showed that ZCF nanocomposite contained 2553.6 ± 199.2 ppm fluorine, whereas no fluoride was detected in ZC. The control buffer enabled bacterial growth to 4 × 107 ± 9 × 106 CFU/mL, whereas ZC allowed growth of 12 ± 8 CFU/mL, and ZCF showed no bacterial growth. Thus, we developed novel fluoride-containing ZnO–CuO nanocomposites, which exhibited antibacterial effects and have the potential for remineralization, thereby demonstrating their potential as multifunctional dental materials

    Biosynthesis of a cholesterol-derived brassinosteroid, 28-norcastasterone, in Arabidopsis thaliana

    Get PDF
    A metabolic study revealed that 28-norcastasterone in Arabidopsis is synthesized from cholesterol via the late C-6 oxidation pathway. On the other hand, the early C-6 oxidation pathway was found to be interrupted because cholestanol is converted to 6-oxocholestanol, but further metabolism to 28-norcathasterone was not observed. The 6-oxoBRs were found to have been produced from the respective 6-deoxoBRs administered to the enzyme solution, thus indicating that these 6-oxoBRs are supplied from the late C-6 oxidation pathway. Heterologously expressed CYP85A1 and CYP85A2 in yeast catalysed this C-6 oxidation, with CYP85A2 being much more efficient than CYP85A1. Abnormal growth of det2 and dwf4 was restored via the application of 28-norcastasterone and closer precursors. Furthermore, det2 and dwf4 could not convert cholesterol to cholestanol and cholestanol to 6-deoxo-28-norcathasterone, respectively. It is, therefore, most likely that the same enzyme system is operant in the synthesis of both 28-norcastasterone and castasterone. In the presence of S-adenosyl-L-methionine, the cell-free enzyme extract catalysed the C-24 methylation of 28-norcastasterone to castasterone, although the conversion rates of 28-norteasterone to teasterone and 28-nortyphasterol to typhasterol were much lower; this suggests that 28-norcastasterone is the primary precursor for the generation of C28-BRs from C27-BRs

    Expression of Functional Anti-p24 scFv 183-H12-5C in HEK293T and Jurkat T Cells

    Get PDF
    Purpose: More than half of the diagnostic and therapeutic recombinant protein production depends on mammalian-based expression system. However, the generation of recombinant antibodies remains a challenge in mammalian cells due to the disulfide bond formation and reducing cytoplasm. Therefore, the production of functional recombinant antibodies in target cell line is necessary to be evaluated before used in therapeutic application such intrabodies against HIV-1. Methods: The work was to test expression of a single-chain variable fragment (scFv) antibody against HIV-1 Capsid p24 protein in a human mammalian-based expression system using HEK293T and Jurkat T cells as a model. Three expression plasmid vectors expressing scFv 183-H12-5C were generated and introduced into HEK293T. Expression of the scFv was analyzed, while ELISA and immunoblotting analysis verified its binding. The evaluation of the recombinant antibody was confirmed by HIV-1 replication and MAGI infectivity assay in Jurkat T cells. Results: Three plasmid vectors expressing scFv 183-H12-5C was successfully engineered in this study. Recombinant antibodies scFv (~29 kDa) and scFv-Fc (~52 kDa) in the cytoplasm of HEK293T were effectively obtained by transfected the cells with engineered pCDNA3.3-mu-IgGk-scFv 183-H12-5C and pCMX2.5-scFv 183-H12-5C-hIgG1-Fc plasmid vectors respectively. scFv and scFv-Fc are specifically bound recombinant p24, and HIV-1 derived p24 (gag) evaluated by ELISA and Western blot. Jurkat T cells transfected by pCDNA3.3-scFv 183-H12-5C inhibit the replication-competent NL4-3 viral infectivity up to 60%. Conclusion: Anti-p24 scFv 183-H12-5C antibody generated is suitable to be acted as intrabodies and may serve as a valuable tool for the development of antibody-based biotherapeutics against HIV-1

    Topology of the World Trade Web

    Get PDF
    Economy, and consequently trade, is a fundamental part of human social organization which, until now, has not been studied within the network modelling framework. Networks are mathematical tools used in the modelling of a wide variety of systems in social and natural science. Examples of these networks range from metabolic and cell networks to technological webs. Here we present the first empirical characterization of the world trade web, that is, the network built upon the trade relationships between different countries in the world. This network displays the typical properties of complex networks, namely, scale-free degree distribution, the {\it small world} property, a high clustering coefficient and, in addition, degree-degree correlation between different vertices. All these properties make the world trade web a complex network, which is far from being well-described through a classical random network description

    Understanding perceptions on 'Buruli' in northwestern Uganda: A biosocial investigation.

    Get PDF
    BACKGROUND: An understudied disease, little research thus far has explored responses to Buruli ulcer and quests for therapy from biosocial perspective, despite reports that people seek biomedical treatment too late. METHODS AND FINDINGS: Taking an inductive approach and drawing on long-term ethnographic fieldwork in 2013-14, this article presents perspectives on this affliction of people living and working along the River Nile in northwest Uganda. Little is known biomedically about its presence, yet 'Buruli', as it is known locally, was and is a significant affliction in this region. Establishing a biosocial history of 'Buruli', largely obscured from biomedical perspectives, offers explanations for contemporary understandings, perceptions and practices. CONCLUSIONS/SIGNIFICANCE: We must move beyond over-simplifying and problematising 'late presentation for treatment' in public health, rather, develop biosocial approaches to understanding quests for therapy that take into account historical and contemporary contexts of health, healing and illness. Seeking to understand the context in which healthcare decisions are made, a biosocial approach enables greater depth and breadth of insight into the complexities of global and local public health priorities such as Buruli ulcer

    Multi-Frequency Electrocochleography and Electrode Scan to Identify Electrode Insertion Trauma during Cochlear Implantation

    Get PDF
    Intraoperative electrocochleography (ECOG) is performed using a single low-frequency acoustic stimulus (e.g., 500 Hz) to monitor cochlear microphonics (CM) during cochlear implant (CI) electrode insertion. A decrease in CM amplitude is commonly associated with cochlear trauma and is used to guide electrode placement. However, advancement of the recording electrode beyond the sites of CM generation can also lead to a decrease in CM amplitude and is sometimes interpreted as cochlear trauma, resulting in unnecessary electrode manipulation and increased risk of cochlear trauma during CI electrode placement. In the present study, multi-frequency ECOG was used to monitor CM during CI electrode placement. The intraoperative CM tracings were compared with electrode scan measurements, where CM was measured for each of the intracochlear electrodes. Comparison between the peak CM amplitude measured during electrode placement and electrode scan measurements was used to differentiate between different mechanisms for decrease in CM amplitude during CI electrode insertion. Analysis of the data shows that both multi-frequency electrocochleography and electrode scan could potentially be used to differentiate between different mechanisms for decreasing CM amplitude and providing appropriate feedback to the surgeon during CI electrode placement

    Sec16 Defines Endoplasmic Reticulum Exit Sites and is Required for Secretory Cargo Export in Mammalian Cells

    Get PDF
    The selective export of proteins and lipids from the endoplasmic reticulum (ER) is mediated by the coat protein complex II (COPII) that assembles onto the ER membrane. In higher eukaryotes, COPII proteins assemble at discrete sites on the membrane known as ER exit sites (ERES). Here, we identify Sec16 as the protein that defines ERES in mammalian cells. Sec16 localizes to ERES independent of Sec23/24 and Sec13/31. Overexpression, and to a lesser extent, small interfering RNA depletion of Sec16, both inhibit ER-to-Golgi transport suggesting that Sec16 is required in stoichiometric amounts. Sar1 activity is required to maintain the localization of Sec16 at discrete locations on the ER membrane, probably through preventing its dissociation. Our data suggest that Sar1-GTP-dependent assembly of Sec16 on the ER membrane forms an organized scaffold defining an ERES

    Comparison of electrohysterogram signal measured by surface electrodes with different designs: A computational study with dipole band and abdomen models

    Get PDF
    Non-invasive measurement of uterine activity using electrohysterogram (EHG) surface electrodes has been attempted to monitor uterine contraction. This study aimed to computationally compare the performance of acquiring EHG signals using monopolar electrode and three types of Laplacian concentric ring electrodes (bipolar, quasi-bipolar and tri-polar). With the implementation of dipole band model and abdomen model, the performances of four electrodes in terms of the local sensitivity were quantifed by potential attenuation. Furthermore, the efects of fat and muscle thickness on potential attenuation were evaluated using the bipolar and tri-polar electrodes with diferent radius. The results showed that all the four types of electrodes detected the simulated EHG signals with consistency. That the bipolar and tri-polar electrodes had greater attenuations than the others, and the shorter distance between the origin and location of dipole band at 20dB attenuation, indicating that they had relatively better local sensitivity. In addition, ANOVA analysis showed that, for all the electrodes with diferent outer ring radius, the efects of fat and muscle on potential attenuation were signifcant (all p<0.01). It is therefore concluded that the bipolar and tri-polar electrodes had higher local sensitivity than the others, indicating that they can be applied to detect EHG efectively
    corecore