290 research outputs found

    Heterogeneous critical nucleation on a completely-wettable substrate

    Full text link
    Heterogeneous nucleation of a new bulk phase on a flat substrate can be associated with the surface phase transition called wetting transition. When this bulk heterogeneous nucleation occurs on a completely-wettable flat substrate with a zero contact angle, the classical nucleation theory predicts that the free energy barrier of nucleation vanishes. In fact, there always exist a critical nucleus and a free energy barrier as the first-order pre-wetting transition will occur even when the contact angle is zero. Furthermore, the critical nucleus changes its character from the critical nucleus of surface phase transition below bulk coexistence (undersaturation) to the critical nucleus of bulk heterogeneous nucleation above the coexistence (oversaturation) when it crosses the coexistence. Recently, Sear [J.Chem.Phys {\bf 129}, 164510 (2008)] has shown by a direct numerical calculation of nucleation rate that the nucleus does not notice this change when it crosses the coexistence. In our work the morphology and the work of formation of critical nucleus on a completely-wettable substrate are re-examined across the coexistence using the interface-displacement model. Indeed, the morphology and the work of formation changes continuously at the coexistence. Our results support the prediction of Sear and will rekindle the interest on heterogeneous nucleation on a completely-wettable substrate.Comment: 11pages, 9 figures, Journal of Chemical Physics to be publishe

    Scaling properties of critical bubble of homogeneous nucleation in stretched fluid of square-gradient density-functional model with triple-parabolic free energy

    Full text link
    The square-gradient density-functional model with triple-parabolic free energy is used to study homogeneous bubble nucleation in a stretched liquid to check the scaling rule for the work of formation of the critical bubble as a function of scaled undersaturation Δμ/Δμspin\Delta\mu/\Delta\mu_{\rm spin}, the difference in chemical potential Δμ\Delta\mu between the bulk undersaturated and saturated liquid divided by Δμspin\Delta\mu_{\rm spin} between the liquid spinodal and saturated liquid. In contrast to our study, a similar density-functional study for a Lennard-Jones liquid by Shen and Debenedetti [J. Chem. Phys. {\bf 114}, 4149 (2001)] found that not only the work of formation but other various quantities related to the critical bubble show the scaling rule, however, we found virtually no scaling relationships in our model near the coexistence. Although some quantities show almost perfect scaling relations near the spinodal, the work of formation divided by the value deduced from the classical nucleation theory shows no scaling in this model even though it correctly vanishes at the spinodal. Furthermore, the critical bubble does not show any anomaly near the spinodal as predicted many years ago. In particular, our model does not show diverging interfacial width at the spinodal, which is due to the fact that compressibility remains finite until the spinodal is reached in our parabolic models.Comment: 10 pages, 10 figures, Journal of Chemical Physics accepted for publicatio

    Steady-state nucleation rate and flux of composite nucleus at saddle point

    Full text link
    The steady-state nucleation rate and flux of composite nucleus at the saddle point is studied by extending the theory of binary nucleation. The Fokker-Planck equation that describes the nucleation flux is derived using the Master equation for the growth of the composite nucleus, which consists of the core of the final stable phase surrounded by a wetting layer of the intermediate metastable phase nucleated from a metastable parent phase recently evaluated by the author [J. Chem. Phys. {\bf 134}, 164508 (2011)]. The Fokker-Planck equation is similar to that used in the theory of binary nucleation, but the non-diagonal elements exist in the reaction rate matrix. First, the general solution for the steady-state nucleation rate and the direction of nucleation flux is derived. Next, this information is then used to study the nucleation of composite nucleus at the saddle point. The dependence of steady-state nucleation rate as well as the direction of nucleation flux on the reaction rate in addition to the free-energy surface is studied using a model free-energy surface. The direction of nucleation current deviates from the steepest-descent direction of the free-energy surface. The results show the importance of two reaction rate constants: one from the metastable environment to the intermediate metastable phase and the other from the metastable intermediate phase to the stable new phase. On the other hand, the gradient of the potential Φ\Phi or the Kramers crossover function (the commitment or splitting probability) is relatively insensitive to reaction rates or free-energy surface.Comment: 12 pages, 6 figures, to be published in Journal of Chemical Physic

    Direct numerical simulation of homogeneous nucleation and growth in a phase-field model using cell dynamics method

    Full text link
    Homogeneous nucleation and growth in a simplest two-dimensional phase field model is numerically studied using the cell dynamics method. Whole process from nucleation to growth is simulated and is shown to follow closely the Kolmogorov-Johnson-Mehl-Avrami (KJMA) scenario of phase transformation. Specifically the time evolution of the volume fraction of new stable phase is found to follow closely the KJMA formula. By fitting the KJMA formula directly to the simulation data, not only the Avrami exponent but the magnitude of nucleation rate and, in particular, of incubation time are quantitatively studied. The modified Avrami plot is also used to verify the derived KJMA parameters. It is found that the Avrami exponent is close to the ideal theoretical value m=3. The temperature dependence of nucleation rate follows the activation-type behavior expected from the classical nucleation theory. On the other hand, the temperature dependence of incubation time does not follow the exponential activation-type behavior. Rather the incubation time is inversely proportional to the temperature predicted from the theory of Shneidman and Weinberg [J. Non-Cryst. Solids {\bf 160}, 89 (1993)]. A need to restrict thermal noise in simulation to deduce correct Avrami exponent is also discussed.Comment: 9 pages, 8 figures, Journal of Chemical Physics to be publishe

    Capillary pressure of van der Waals liquid nanodrops

    Full text link
    The dependence of the surface tension on a nanodrop radius is important for the new-phase formation process. It is demonstrated that the famous Tolman formula is not unique and the size-dependence of the surface tension can distinct for different systems. The analysis is based on a relationship between the surface tension and disjoining pressure in nanodrops. It is shown that the van der Waals interactions do not affect the new-phase formation thermodynamics since the effect of the disjoining pressure and size-dependent component of the surface tension cancel each other.Comment: The paper is dedicated to the 80th anniversary of A.I. Rusano

    A New SU UMa-Type Dwarf Nova, QW Serpentis (= TmzV46)

    Full text link
    We report on the results of the QW Ser campaign which has been continued from 2000 to 2003 by the VSNET collaboration team. Four long outbursts and many short ones were caught during this period. Our intensive photometric observations revealed superhumps with a period of 0.07700(4) d during all four superoutbursts, proving the SU UMa nature of this star. The recurrence cycles of the normal outbursts and the superoutbursts were measured to be ∼\sim50 days and 240(30) days, respectively. The change rate of the superhump period was -5.8x10^{-5}. The distance and the X-ray luminosity in the range of 0.5-2.4 keV are estimated to be 380(60) pc and log L_x = 31.0 \pm 0.1 erg s^{-1}. These properties have typical values for an SU UMa-type dwarf nova with this superhump period.Comment: 9 pages, 12 figures, to appear in the VSNET special issue of PAS

    Nucleation and Bulk Crystallization in Binary Phase Field Theory

    Full text link
    We present a phase field theory for binary crystal nucleation. In the one-component limit, quantitative agreement is achieved with computer simulations (Lennard-Jones system) and experiments (ice-water system) using model parameters evaluated from the free energy and thickness of the interface. The critical undercoolings predicted for Cu-Ni alloys accord with the measurements, and indicate homogeneous nucleation. The Kolmogorov exponents deduced for dendritic solidification and for "soft-impingement" of particles via diffusion fields are consistent with experiment.Comment: 4 pages, 4 figures, accepted to PR

    Monte Carlo Methods for Estimating Interfacial Free Energies and Line Tensions

    Full text link
    Excess contributions to the free energy due to interfaces occur for many problems encountered in the statistical physics of condensed matter when coexistence between different phases is possible (e.g. wetting phenomena, nucleation, crystal growth, etc.). This article reviews two methods to estimate both interfacial free energies and line tensions by Monte Carlo simulations of simple models, (e.g. the Ising model, a symmetrical binary Lennard-Jones fluid exhibiting a miscibility gap, and a simple Lennard-Jones fluid). One method is based on thermodynamic integration. This method is useful to study flat and inclined interfaces for Ising lattices, allowing also the estimation of line tensions of three-phase contact lines, when the interfaces meet walls (where "surface fields" may act). A generalization to off-lattice systems is described as well. The second method is based on the sampling of the order parameter distribution of the system throughout the two-phase coexistence region of the model. Both the interface free energies of flat interfaces and of (spherical or cylindrical) droplets (or bubbles) can be estimated, including also systems with walls, where sphere-cap shaped wall-attached droplets occur. The curvature-dependence of the interfacial free energy is discussed, and estimates for the line tensions are compared to results from the thermodynamic integration method. Basic limitations of all these methods are critically discussed, and an outlook on other approaches is given

    Surface Structure of Liquid Metals and the Effect of Capillary Waves: X-ray Studies on Liquid Indium

    Full text link
    We report x-ray reflectivity (XR) and small angle off-specular diffuse scattering (DS) measurements from the surface of liquid Indium close to its melting point of 156∘156^\circC. From the XR measurements we extract the surface structure factor convolved with fluctuations in the height of the liquid surface. We present a model to describe DS that takes into account the surface structure factor, thermally excited capillary waves and the experimental resolution. The experimentally determined DS follows this model with no adjustable parameters, allowing the surface structure factor to be deconvolved from the thermally excited height fluctuations. The resulting local electron density profile displays exponentially decaying surface induced layering similar to that previously reported for Ga and Hg. We compare the details of the local electron density profiles of liquid In, which is a nearly free electron metal, and liquid Ga, which is considerably more covalent and shows directional bonding in the melt. The oscillatory density profiles have comparable amplitudes in both metals, but surface layering decays over a length scale of 3.5±0.63.5\pm 0.6 \AA for In and 5.5±0.45.5\pm 0.4 \AA for Ga. Upon controlled exposure to oxygen, no oxide monolayer is formed on the liquid In surface, unlike the passivating film formed on liquid Gallium.Comment: 9 pages, 5 figures; submitted to Phys. Rev.

    The Cyprinodon variegatus genome reveals gene expression changes underlying differences in skull morphology among closely related species

    Get PDF
    Genes in durophage intersection set at 15 dpf. This is a comma separated table of the genes in the 15 dpf durophage intersection set. Given are edgeR results for each pairwise comparison. Columns indicating whether a gene is included in the intersection set at a threshold of 1.5 or 2 fold are provided. (CSV 13 kb
    • …
    corecore