169 research outputs found

    Neutron star properties with relativistic equations of state

    Get PDF
    We study the properties of neutron stars adopting relativistic equations of state of neutron star matter, calculated in the framework of the relativistic Brueckner-Hartree-Fock approximation for electrically charge neutral neutron star matter in beta-equilibrium. For higher densities more baryons (hyperons etc.) are included by means of the relativistic Hartree- or Hartree-Fock approximation. The special features of the different approximations and compositions are discussed in detail. Besides standard neutron star properties special emphasis is put on the limiting periods of neutron stars, for which the Kepler criterion and gravitation-reaction instabilities are considered. Furthermore the cooling behaviour of neutron stars is investigated, too. For comparison we give also the outcome for some nonrelativistic equations of state.Comment: 43 pages, 22 ps-figures, to be published in the International Journal of Modern Physics

    Neuroimaging phenotypes of CSF1R-related leukoencephalopathy: Systematic review, meta-analysis, and imaging recommendations

    Full text link
    Colony-stimulating factor 1 receptor (CSF1R)-related leukoencephalopathy is a rare but fatal microgliopathy. The diagnosis is often delayed due to multifaceted symptoms that can mimic several other neurological disorders. Imaging provides diagnostic clues that help identify cases. The objective of this study was to integrate the literature on neuroimaging phenotypes of CSF1R-related leukoencephalopathy. A systematic review and meta-analysis were performed for neuroimaging findings of CSF1R-related leukoencephalopathy via PubMed, Web of Science, and Embase on 25 August 2021. The search included cases with confirmed CSF1R mutations reported under the previous terms hereditary diffuse leukoencephalopathy with spheroids, pigmentary orthochromatic leukodystrophy, and adult-onset leukoencephalopathy with axonal spheroids and pigmented glia. In 78 studies providing neuroimaging data, 195 cases were identified carrying CSF1R mutations in 14 exons and five introns. Women had a statistically significant earlier age of onset (p = 0.041, 40 vs 43 years). Mean delay between symptom onset and neuroimaging was 2.3 years. Main magnetic resonance imaging (MRI) findings were frontoparietal white matter lesions, callosal thinning, and foci of restricted diffusion. The hallmark computed tomography (CT) finding was white matter calcifications. Widespread cerebral hypometabolism and hypoperfusion were reported using positron emission tomography and single-photon emission computed tomography. In conclusion, CSF1R-related leukoencephalopathy is associated with progressive white matter lesions and brain atrophy that can resemble other neurodegenerative/-inflammatory disorders. However, long-lasting diffusion restriction and parenchymal calcifications are more specific findings that can aid the differential diagnosis. Native brain CT and brain MRI (with and without a contrast agent) are recommended with proposed protocols and pictorial examples are provided

    Quark mean field model with density dependent couplings for finite nuclei

    Get PDF
    The quark mean field model, which describes the nucleon using the constituent quark model, is applied to investigate the properties of finite nuclei. The couplings of the scalar and vector mesons with quarks are made density dependent through direct coupling to the scalar field so as to reproduce the relativistic Brueckner-Hartree-Fock results of nuclear matter. The present model provides satisfactory results on the properties of spherical nuclei, and predicts an increasing size of the nucleon as well as a reduction of the nucleon mass in the nuclear environmentComment: 8 pages, REVTeX, 8 ps figures, accepted for publication in Phys. Rev.

    Application of the density dependent hadron field theory to neutron star matter

    Get PDF
    The density dependent hadron field (DDRH) theory, previously applied to isospin nuclei and hypernuclei is used to describe β\beta-stable matter and neutron stars under consideration of the complete baryon octet. The meson-hyperon vertices are derived from Dirac-Brueckner calculations of nuclear matter and extended to hyperons. We examine properties of density dependent interactions derived from the Bonn A and from the Groningen NN potential as well as phenomenological interactions. The consistent treatment of the density dependence introduces rearrangement terms in the expression for the baryon chemical potential. This leads to a more complex condition for the β\beta-equilibrium compared to standard relativistic mean field (RMF) approaches. We find a strong dependence of the equation of state and the particle distribution on the choice of the vertex density dependence. Results for neutron star masses and radii are presented. We find a good agreement with other models for the maximum mass. Radii are smaller compared to RMF models and indicate a closer agreement with results of non-relativistic Brueckner calculations.Comment: 28 pages, 11 figure

    Properties of charmed and bottom hadrons in nuclear matter: A plausible study

    Get PDF
    Changes in properties of heavy hadrons with a charm or a bottom quark are studied in nuclear matter. Effective masses (scalar potentials) for the hadrons are calculated using quark-meson coupling model. Our results also suggest that the heavy baryons containing a charm or a bottom quark will form charmed or bottom hypernuclei, which was first predicted in mid 70's. In addition a possibility of BB^--nuclear bound (atomic) states is briefly discussed.Comment: Latex, 11 pages, 3 figures, text was expanded substantially, version to appear in Phys. Lett.

    Ethnic inequalities and pathways to care in psychosis in England: a systematic review and meta-analysis

    Get PDF
    © The Author(s). 2018Background: As part of a national programme to tackle ethnic inequalities, we conducted a systematic review and meta-analysis of research on ethnic inequalities in pathways to care for adults with psychosis living in England and/or Wales. Methods: Nine databases were searched from inception to 03.07.17 for previous systematic reviews, including forward and backward citation tracking and a PROSPERO search to identify ongoing reviews. We then carried forward relevant primary studies from included reviews (with the latest meta-analyses reporting on research up to 2012), supplemented by a search on 18.10.17 in MEDLINE, Embase, PsycINFO and CINAHL for primary studies between 2012 and 2017 that had not been covered by previous meta-analyses. Results: Forty studies, all conducted in England, were included for our updated meta-analyses on pathways to care. Relative to the White reference group, elevated rates of civil detentions were found for Black Caribbean (OR = 3.43, 95% CI = 2.68 to 4.40, n = 18), Black African (OR = 3.11, 95% CI = 2.40 to 4.02, n = 6), and South Asian patients (OR = 1.50, 95% CI 1.07 to 2.12, n = 10). Analyses of each Mental Health Act section revealed significantly higher rates for Black people under (civil) Section 2 (OR = 1.53, 95% CI = 1.11 to 2.11, n = 3). Rates in repeat admissions were significantly higher than in first admission for South Asian patients (between-group difference p < 0.01). Some ethnic groups had more police contact (Black African OR = 3.60, 95% CI = 2.15 to 6.05, n = 2; Black Caribbean OR = 2.64, 95% CI = 1.88 to 3.72, n = 8) and criminal justice system involvement (Black Caribbean OR = 2.76, 95% CI = 2.02 to 3.78, n = 5; Black African OR = 1.92, 95% CI = 1.32 to 2.78, n = 3). The White Other patients also showed greater police and criminal justice system involvement than White British patients (OR = 1.49, 95% CI = 1.03 to 2.15, n = 4). General practitioner involvement was less likely for Black than the White reference group. No significant variations over time were found across all the main outcomes. Conclusions: Our updated meta-analyses reveal persisting but not significantly worsening patterns of ethnic inequalities in pathways to psychiatric care, particularly affecting Black groups. This provides a comprehensive evidence base from which to inform policy and practice amidst a prospective Mental Health Act reform. Trial registration: CRD42017071663Peer reviewedFinal Published versio

    Nuclei, Superheavy Nuclei and Hypermatter in a chiral SU(3)-Modell

    Full text link
    A model based on chiral SU(3)-symmetry in nonlinear realisation is used for the investigation of nuclei, superheavy nuclei, hypernuclei and multistrange nuclear objects (so called MEMOs). The model works very well in the case of nuclei and hypernuclei with one Lambda-particle and rules out MEMOs. Basic observables which are known for nuclei and hypernuclei are reproduced satisfactorily. The model predicts Z=120 and N=172, 184 and 198 as the next shell closures in the region of superheavy nuclei. The calculations have been performed in self-consistent relativistic mean field approximation assuming spherical symmetry. The parameters were adapted to known nuclei.Comment: 19 pages, 11 figure

    Особливості державного регулювання інвестиційно-інноваційної діяльності, в сфері екології

    Get PDF
    BACKGROUND: Particulate matter (PM) air pollution is a human lung carcinogen; however, the components responsible have not been identified. We assessed the associations between PM components and lung cancer incidence. METHODS: We used data from 14 cohort studies in eight European countries. We geocoded baseline addresses and assessed air pollution with land-use regression models for eight elements (Cu, Fe, K, Ni, S, Si, V and Zn) in size fractions of PM2.5 and PM10. We used Cox regression models with adjustment for potential confounders for cohort-specific analyses and random effect models for meta-analysis. RESULTS: The 245,782 cohort members contributed 3,229,220 person-years at risk. During follow-up (mean, 13.1 years), 1878 incident cases of lung cancer were diagnosed. In the meta-analyses, elevated hazard ratios (HRs) for lung cancer were associated with all elements except V; none was statistically significant. In analyses restricted to participants who did not change residence during follow-up, statistically significant associations were found for PM2.5 Cu (HR, 1.25; 95% CI, 1.01-1.53 per 5 ng/m(3)), PM10 Zn (1.28; 1.02-1.59 per 20 ng/m(3)), PM10 S (1.58; 1.03-2.44 per 200 ng/m(3)), PM10 Ni (1.59; 1.12-2.26 per 2 ng/m(3)) and PM10 K (1.17; 1.02-1.33 per 100 ng/m(3)). In two-pollutant models, associations between PM10 and PM2.5 and lung cancer were largely explained by PM2.5 S. CONCLUSIONS: This study indicates that the association between PM in air pollution and lung cancer can be attributed to various PM components and sources. PM containing S and Ni might be particularly important
    corecore