2,086 research outputs found

    Structure of the nuclear force in a chiral quark-diquark model

    Full text link
    We discuss the structure of the nuclear force using a lagrangian derived from hadronization of a chiral quark and diquark model. A generalized trace log formula including meson and nucleon fields is expanded to the order in which relevant terms emerge. It is shown that the nuclear force is composed of long and medium range parts of chiral meson exchanges and short range parts of quark-diquark exchanges. The ranges of the scalar and vector interactions coincide well with those of sigma (σ\sigma) and omega (ω\omega) meson exchanges if the size of the nucleon core of a quark-diquark bound state is adjusted appropriately.Comment: 12 pages, 9 figure

    Structure of the Nucleon and Roper Resonance with Diquark Correlations

    Full text link
    We investigate the electric form factors of the nucleon and Roper resonance using a quark-diquark model. We find that the charge radii of the nucleon and Roper resonance are almost the same in size.Comment: To appear in the proceedings of Chiral 07, Osaka, Japan, November 13-16, 2007. 4pages, 4figure

    A Method to Unambiguously Determine the Parity of the Theta+ Pentaquark

    Full text link
    With the recent discovery of the Θ(1540)\Theta(1540) pentaquark, the question of its parity is paramount since this will constrain the correct description of its internal structure. We show that the measurement of the spin singlet and triplet cross sections for the reaction ppΣ+Θ+\vec{p}\vec{p} \to \Sigma^+ \Theta^+ will unambiguously determine the parity of the Θ+\Theta^+.Comment: 3 page

    The mass of the nucleon in a chiral quark-diquark model

    Full text link
    The mass of the nucleon is studied in a chiral quark-diquark model. Both scalar and axial-vector diquarks are taken into account for the construction of the nucleon state. After the hadronization procedure to obtain an effective meson-baryon Lagrangian, the quark-diquark self-energy is calculated in order to generate the baryon kinetic term as well as the mass of the nucleon. It turns out that both the scalar and axial-vector parts of the self-energy are attractive for the mass of the nucleon. We investigate the range of parameters that can reproduce the mass of the nucleon.Comment: 10 pages, 6 figures. Numerical errors are corrected. Accepted to Phys. Rev. C72 (2005) 03520

    Nucleon axial couplings and [(1/2,0) + (0,1/2)]-[(1,1/2) + (1/2,1)] chiral multiplet mixing

    Full text link
    Three-quark nucleon interpolating fields in QCD have well-defined SU_L(2) x SU_R(2) and U_A(1) chiral transformation properties. Mixing of the [(1,1/2) + (1/2,1)] chiral multiplet with one of [(1/2,0) + (0,1/2)] or [(0,1/2) + (1/2,0)] representation can be used to fit the isovector axial coupling g_A(1) and thus predict the isoscalar axial coupling g_A(0) of the nucleon, in reasonable agreement with experiment. We also use a chiral meson-baryon interaction to calculate the masses and one-pion-interaction terms of J=1/2 baryons belonging to the [(0,1/2) + (1/2,0)] and [(1,1/2) + (1/2,1)] chiral multiplets and fit two of the diagonalized masses to the lowest-lying nucleon resonances thus predicting the third J=1/2 resonance at 2030 MeV, not far from the (one-star PDG) state Delta(2150).Comment: To appear in Modern Physics Letters

    A Lagrangian for the Chiral (1/2,0) + (0,1/2) Quartet Nucleon Resonances

    Full text link
    We study the nucleon and three N* resonances' properties in an effective linear realization chiral SU_L(2) x SU_R(2) and U_A(1) symmetric Lagrangian. We place the nucleon fields into the so-called "naive" (1/2,0) + (0, 1/2) and "mirror" (0, 1/2) + (1/2,0) (fundamental) representations of SU_L(2) x SU_R(2), two of each -distinguished by their U_A(1) chiral properties, as defined by an explicit construction of the nucleon interpolating fields in terms of three quark (Dirac) fields. We construct the most general one-meson-baryon chiral interaction Lagrangian assuming various parities of these four nucleon fields. We show that the observed masses of the four lowest lying nucleon states can be well reproduced with the effective Lagrangian, after spontaneous symmetry breakdown, without explicit breaking of U_A(1) symmetry. This does not mean that explicit U_A(1) symmetry breaking does not occur in baryons, but rather that it does not have a unique mass prediction signature that exists e.g. in the case of spinless mesons. We also consider briefly the axial couplings with chiral representation mixing.Comment: Published in International Journal of Modern Physics

    Role of vector and pseudoscalar mesons in understanding 1/21/2^- NN^* and Δ\Delta resonances

    Full text link
    A study of nonstrange meson-baryon systems has been made with the idea of understanding the properties of the low-lying 1/21/2^- NN^* and Δ\Delta resonances. The coupled channels are built by considering the pseudoscalar and vector mesons together with the octet baryons. The formalism is based on obtaining the interactions from the lowest order chiral Lagrangian when dealing with pseudoscalar mesons and relying on the hidden local symmetry in case of the vector mesons. The transition between the two systems is obtained by replacing the photon by a vector meson in the Kroll-Ruderman theorem for the photoproduction of pseudoscalar mesons. The subtraction constants, required to calculate the loop-function in the scattering equations, are constrained by fitting the available experimental data on some of the reactions with pseudoscalar meson-baryon final states. As a consequence, we find resonances which can be related to N(1535)N^*(1535), N(1650)N^*(1650) (with a double pole structure), N(1895)N^*(1895) and Δ(1620)\Delta(1620). We conclude that these resonances can be, at least partly, interpreted as dynamically generated resonances and that the vector mesons play an important role in determining the dynamical origin of the low-lying NN^* and Δ\Delta states.Comment: Published versio

    Exotic mesons with hidden charm and bottom near thresholds

    Full text link
    We study heavy hadron spectroscopy near heavy meson thresholds. We employ heavy pseudoscalar meson P and heavy vector meson P* as effective degrees of freedom and consider meson exchange potentials between them. All possible composite states which can be constructed from the P and P* mesons are studied up to the total angular momentum J <= 2. We consider, as exotic states, isosinglet states with exotic J^{PC} quantum numbers and isotriplet states. We solve numerically the Schr\"odinger equation with channel-couplings for each state. We found B(*)barB(*) molecule states for I^G(J^{PC}) = 1^+(1^{+-}) correspond to the masses of twin resonances Zb(10610) and Zb(10650). We predict several possible B(*)barB(*) bound and/or resonant states in other channels. On the other hand, there are no B(*)barB(*) bound and/or resonant states whose quantum numbers are exotic.Comment: 10 pages, 1 figure, to appear in the proceedings of The 5th International Workshop on Charm Physics (Charm 2012

    Coupling vector and pseudoscalar mesons to study baryon resonances

    Full text link
    A study of meson-baryon systems with total strangeness -1 is made within a framework based on the chiral and hidden local symmetries. These systems consist of octet baryons, pseudoscalar and vector mesons. The pseudoscalar meson-baryon (PB) dynamics has been earlier found determinant for the existence of some strangeness -1 resonances, for example, Λ(1405)\Lambda(1405), Λ(1670)\Lambda(1670), etc. The motivation of the present work is to study the effect of coupling the closed vector meson-baryon (VB) channels to these resonances. To do this, we obtain the PBPBPB \rightarrow PB and VBVBVB \rightarrow VB amplitudes from the t-channel diagrams and the PBVBPB \leftrightarrow VB amplitudes are calculated using the Kroll-Ruddermann term where, considering the vector meson dominance phenomena, the photon is replaced by a vector meson. The calculations done within this formalism reveal a very strong coupling of the VB channels to the Λ(1405)\Lambda(1405) and Λ(1670)\Lambda(1670). In the isospin 1 case, we find an evidence for a double pole structure of the Σ(1480)\Sigma (1480) which, like the isospin 0 resonances, is also found to couple strongly to the VB channels. The strong coupling of these low-lying resonances to the VB channels can have important implications on certain reactions producing them.Comment: Minor typos corrected (in Eq.(22) and axis-labels of some figures

    Vector meson-Baryon dynamics and generation of resonances

    Full text link
    The purpose of this work is to study vector meson-octet baryon interactions with the aim to find dynamical generation of resonances in such systems. For this, we consider s-, t-, u-channel diagrams along with a contact interaction originating from the hidden local symmetry Lagrangian. We find the contribution from all these sources, except the s-channel, to be important. The amplitudes obtained by solving coupled channel Bethe Salpeter equations for systems with total strangeness zero, show generation of one isospin 3/2, spin 1/2 resonance and three isospin 1/2 resonances: two with spin 3/2 and one with spin 1/2. We identify these resonances with Δ(1900)S31\Delta (1900) S_{31}, N(2080)D13N^* (2080) D_{13}, N(1700)D13N^* (1700) D_{13}, and N(2090)S11N^*(2090) S_{11}, respectively
    corecore