973 research outputs found

    Picosecond timescale Raman processes and spectroscopy

    Get PDF
    This is the publisher's version, also available electronically from http://www.degruyter.com/view/j/pac.1985.57.issue-2/pac198557020195/pac198557020195.xml

    Pufendorf, Samuel

    Get PDF
    During the last two decades, Samuel von Pufendorf’s (1632–1694) natural law philosophy has become the subject of renewed and growing attentiveness among intellectual historians and philosophers (Seidler 2015). In the late-seventeenth century and early eighteenth century, Pufendorf was the most widely-read moral and political philosopher in Europe, whose reputation is most clearly exemplified in the impressive number of translations and editions of his works. Pufendorfian natural law theory offered a shared vocabulary and conceptual possibilities for the discussion of morality, politics and interstate relations for numerous eighteenth-century thinkers, such as Christian Thomasius, the authors of the Scottish Enlightenment and Jean-Jacques Rousseau. Pufendorf spent large parts of his career in princely courts and portrayed the history of states and their natural law foundations in his widely circulated historical works (Seidler 1997). Moreover, he also wrote on the issues of theology and church-state relations (Döring 1992, Zurbuchen 1998).Peer reviewe

    Thermal diffusion of supersonic solitons in an anharmonic chain of atoms

    Full text link
    We study the non-equilibrium diffusion dynamics of supersonic lattice solitons in a classical chain of atoms with nearest-neighbor interactions coupled to a heat bath. As a specific example we choose an interaction with cubic anharmonicity. The coupling between the system and a thermal bath with a given temperature is made by adding noise, delta-correlated in time and space, and damping to the set of discrete equations of motion. Working in the continuum limit and changing to the sound velocity frame we derive a Korteweg-de Vries equation with noise and damping. We apply a collective coordinate approach which yields two stochastic ODEs which are solved approximately by a perturbation analysis. This finally yields analytical expressions for the variances of the soliton position and velocity. We perform Langevin dynamics simulations for the original discrete system which fully confirm the predictions of our analytical calculations, namely noise-induced superdiffusive behavior which scales with the temperature and depends strongly on the initial soliton velocity. A normal diffusion behavior is observed for very low-energy solitons where the noise-induced phonons also make a significant contribution to the soliton diffusion.Comment: Submitted to PRE. Changes made: New simulations with a different method of soliton detection. The results and conclusions are not different from previous version. New appendixes containing information about the system energy and soliton profile

    Two-Dimensional Infrared Spectroscopy of Antiparallel β-Sheet Secondary Structure

    Get PDF
    We investigate the sensitivity of femtosecond Fourier transform two-dimensional infrared spectroscopy to protein secondary structure with a study of antiparallel β-sheets. The results show that 2D IR spectroscopy is more sensitive to structural differences between proteins than traditional infrared spectroscopy, providing an observable that allows comparison to quantitative models of protein vibrational spectroscopy. 2D IR correlation spectra of the amide I region of poly-L-lysine, concanavalin A, ribonuclease A, and lysozyme show cross-peaks between the IR-active transitions that are characteristic of amide I couplings for polypeptides in antiparallel hydrogen-bonding registry. For poly-L-lysine, the 2D IR spectrum contains the eight-peak structure expected for two dominant vibrations of an extended, ordered antiparallel β-sheet. In the proteins with antiparallel β-sheets, interference effects between the diagonal and cross-peaks arising from the sheets, combined with diagonally elongated resonances from additional amide transitions, lead to a characteristic “Z”-shaped pattern for the amide I region in the 2D IR spectrum. We discuss in detail how the number of strands in the sheet, the local configurational disorder in the sheet, the delocalization of the vibrational excitation, and the angle between transition dipole moments affect the position, splitting, amplitude, and line shape of the cross-peaks and diagonal peaks.

    Cloning and functional analysis of a fructosyltransferase cDNA for synthesis of highly polymerized levans in timothy (Phleum pratense L.)

    Get PDF
    Variation in the structures of plant fructans and their degree of polymerization (DP) can be explained as the result of diverse combinations of fructosyltransferases (FTs) with different properties. Although FT genes have been isolated in a range of plant species, sucrose:fructan 6-fructosyltransferase (6-SFT) cDNAs have only been functionally characterized in a few species such as wheat. A novel FT cDNA possessing 6-SFT activity has been identified and characterized from the temperate forage grass, timothy (Phleum pratense L.). The cDNA of an FT homolog, PpFT1, was isolated from cold-acclimated timothy. A recombinant PpFT1 protein expressed in Pichia pastoris showed 6-SFT/sucrose:sucrose 1-fructosyltransferase (1-SST) activity and produced linear β(2,6)-linked levans from sucrose with higher DPs than present in graminans formed in vitro by wheat 6-SFT (Wft1). PpFT1 and Wft1 showed remarkably different acceptor substrate specificities: PpFT1 had high affinity for 6-kestotriose to produce levans and low affinity for 1-kestotriose, whereas Wft1 preferentially used 1-kestotriose as an acceptor. The affinity of the PpFT1 recombinant enzyme for sucrose as a substrate was lower than that of the Wft1 recombinant enzyme. It is also confirmed that timothy seedlings had elevated levels of PpFT1 transcripts during the accumulation of fructans under high sucrose and cold conditions. Our results suggest that PpFT1 is a novel cDNA with unique enzymatic properties that differ from those of previously cloned plant 6-SFTs, and is involved in the synthesis of highly polymerized levans in timothy

    Functional Diversity and Structural Disorder in the Human Ubiquitination Pathway

    Get PDF
    The ubiquitin-proteasome system plays a central role in cellular regulation and protein quality control (PQC). The system is built as a pyramid of increasing complexity, with two E1 (ubiquitin activating), few dozen E2 (ubiquitin conjugating) and several hundred E3 (ubiquitin ligase) enzymes. By collecting and analyzing E3 sequences from the KEGG BRITE database and literature, we assembled a coherent dataset of 563 human E3s and analyzed their various physical features. We found an increase in structural disorder of the system with multiple disorder predictors (IUPred - E1: 5.97%, E2: 17.74%, E3: 20.03%). E3s that can bind E2 and substrate simultaneously (single subunit E3, ssE3) have significantly higher disorder (22.98%) than E3s in which E2 binding (multi RING-finger, mRF, 0.62%), scaffolding (6.01%) and substrate binding (adaptor/substrate recognition subunits, 17.33%) functions are separated. In ssE3s, the disorder was localized in the substrate/adaptor binding domains, whereas the E2-binding RING/HECT-domains were structured. To demonstrate the involvement of disorder in E3 function, we applied normal modes and molecular dynamics analyses to show how a disordered and highly flexible linker in human CBL (an E3 that acts as a regulator of several tyrosine kinase-mediated signalling pathways) facilitates long-range conformational changes bringing substrate and E2-binding domains towards each other and thus assisting in ubiquitin transfer. E3s with multiple interaction partners (as evidenced by data in STRING) also possess elevated levels of disorder (hubs, 22.90% vs. non-hubs, 18.36%). Furthermore, a search in PDB uncovered 21 distinct human E3 interactions, in 7 of which the disordered region of E3s undergoes induced folding (or mutual induced folding) in the presence of the partner. In conclusion, our data highlights the primary role of structural disorder in the functions of E3 ligases that manifests itself in the substrate/adaptor binding functions as well as the mechanism of ubiquitin transfer by long-range conformational transitions. © 2013 Bhowmick et al
    corecore