1,200 research outputs found
Analysis of meteorology-chemistry interactions during air pollution episodes using online coupled models within AQMEII Phase-2
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).This study reviews the top ranked meteorology and chemistry interactions in online coupled models recommended by an experts’ survey conducted in COST Action EuMetChem and examines the sensitivity of those interactions during two pollution episodes: the Russian forest fires 25 Jul -15 Aug 2010 and a Saharan dust transport event from 1 Oct -31 Oct 2010 as a part of the AQMEII phase-2 exercise. Three WRF-Chem model simulations were performed for the forest fire case for a baseline without any aerosol feedback on meteorology, a simulation with aerosol direct effects only and a simulation including both direct and indirect effects. For the dust case study, eight WRF-Chem and one WRF-CMAQ simulations were selected from the set of simulations conducted in the framework of AQMEII. Of these two simulations considered no feedbacks, two included direct effects only and five simulations included both direct and indirect effects. The results from both episodes demonstrate that it is important to include the meteorology and chemistry interactions in online-coupled models. Model evaluations using routine observations collected in AQMEII phase-2 and observations from a station in Moscow show that for the fire case the simulation including only aerosol direct effects has better performance than the simulations with no aerosol feedbacks or including both direct and indirect effects. The normalized mean biases are significantly reduced by 10-20% for PM10 when including aerosol direct effects. The analysis for the dust case confirms that models perform better when including aerosol direct effects, but worse when including both aerosol direct and indirect effects, which suggests that the representation of aerosol indirect effects needs to be improved in the model.Peer reviewedFinal Published versio
Dominant aerosol processes during high-pollution episodes over Greater Tokyo
This paper studies two high-pollution episodes over Greater Tokyo: 9 and 10
December 1999, and 31 July and 1 August 2001. Results obtained with the
chemistry-transport model (CTM) Polair3D are compared to measurements of
inorganic PM2.5. To understand to which extent the aerosol processes modeled in
Polair3D impact simulated inorganic PM2.5, Polair3D is run with different
options in the aerosol module, e.g. with/without heterogeneous reactions. To
quantify the impact of processes outside the aerosol module, simulations are
also done with another CTM (CMAQ). In the winter episode, sulfate is mostly
impacted by condensation, coagulation, long-range transport, and deposition to
a lesser extent. In the summer episode, the effect of long-range transport
largely dominates. The impact of condensation/evaporation is dominant for
ammonium, nitrate and chloride in both episodes. However, the impact of the
thermodynamic equilibrium assumption is limited. The impact of heterogeneous
reactions is large for nitrate and ammonium, and taking heterogeneous reactions
into account appears to be crucial in predicting the peaks of nitrate and
ammonium. The impact of deposition is the same for all inorganic PM2.5. It is
small compared to the impact of other processes although it is not negligible.
The impact of nucleation is negligible in the summer episode, and small in the
winter episode. The impact of coagulation is larger in the winter episode than
in the summer episode, because the number of small particles is higher in the
winter episode as a consequence of nucleation.Comment: Journal of Geophysical Research D: Atmospheres (15/05/2007) in pres
X-ray Raman scattering study of aligned polyfluorene
We present a non-resonant inelastic x-ray scattering study at the carbon
K-edge on aligned poly[9,9-bis(2-ethylhexyl)-fluorene-2,7-diyl] and show that
the x-ray Raman scattering technique can be used as a practical alternative to
x-ray absorption measurements. We demonstrate that this novel method can be
applied to studies on aligned -conjugated polymers complementing
diffraction and optical studies. Combining the experimental data and a very
recently proposed theoretical scheme we demonstrate a unique property of x-ray
Raman scattering by performing the symmetry decomposition on the density of
unoccupied electronic states into - and -type symmetry contributions.Comment: 19 pages, 8 figure
PREP-CHEM-SRC – 1.0: a preprocessor of trace gas and aerosol emission fields for regional and global atmospheric chemistry models
The preprocessor PREP-CHEM-SRC presented in the paper is a comprehensive tool aiming at preparing emission fields of trace gases and aerosols for use in atmospheric-chemistry transport models. The considered emissions are from the most recent databases of urban/industrial, biogenic, biomass burning, volcanic, biofuel use and burning from agricultural waste sources. For biomass burning, emissions can be also estimated directly from satellite fire detections using a fire emission model included in the tool. The preprocessor provides emission fields interpolated onto the transport model grid. Several map projections can be chosen. The inclusion of these emissions in transport models is also presented. The preprocessor is coded using Fortran90 and C and is driven by a <i>namelist</i> allowing the user to choose the type of emissions and the databases
Specific staining of human chromosomes in Chinese hamster x man hybrid cell lines demonstrates interphase chromosome territories
In spite of Carl Rabl's (1885) and Theodor Boveri's (1909) early hypothesis that chromosomes occupy discrete territories or domains within the interphase nucleus, evidence in favor pf this hypothesis has been limited and indirect so far in higher plants and animals. The alternative possibility that the chromatin fiber of single chromosomes might be extended throughout the major part of even the whole interphase nucleus has been considered for many years. In the latter case, chromosomes would only exist as discrete chromatin bodies during mitosis but not during interphase. Both possibilities are compatible with Boveri's well established paradigm of chromosome individuality. Here we show that an active human X chromosome contained as the only human chromosome in a Chinese hamster x man hybrid cell line can be visualized both in metaphse plates and in interphase nuclei after in situ hybridization with either 3H- or biotin-labeled human genomic DNA. We demonstrate that this chromosome is organized as a distinct chromatin body throughout interphase. In addition, evidence for the territorial organization of human chromosomes is also presented for another hybrid cell line containing several autosomes and the human X chromosome. These findings are discussed in the context of our present knowledge of the organization and topography of interphase chromosomes. General applications of a strategy aimed at specific staining of individual chromosomes in experimental and clinical cytogenetics are briefly considered
The Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS) ? Part 1: Model description and evaluation
International audienceWe introduce the Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS). CATT-BRAMS is an on-line transport model fully consistent with the simulated atmospheric dynamics. Emission sources from biomass burning and urban-industrial-vehicular activities for trace gases and aerosol particles are obtained from several published datasets and remote sensing information. The tracer and aerosol mass concentration prognostic includes the effects of sub-grid scale turbulence in the planetary boundary layer, convective transport by shallow and deep moist convection, wet and dry deposition, and plume rise associated with vegetation fires in addition to the grid scale transport. The radiation parameterization takes into account the interaction between aerosol particles and short and long wave radiation. The atmospheric model BRAMS is based on the Regional Atmospheric Modeling System (RAMS), with several improvements associated with cumulus convection representation, soil moisture initialization and surface scheme tuned for the tropics, among others. In this paper the CATT-BRAMS model is used to simulate carbon monoxide and particulate material (PM2.5) surface fluxes and atmospheric transport during the 2002 LBA field campaigns, conducted during the transition from the dry to wet season in the southwest Amazon Basin. Model evaluation is addressed with comparisons between model results and near surface, radiosonde and airborne measurements performed during the field campaign, as well as remote sensing derived products. We show the matching of emissions strengths to observed carbon monoxide in the LBA campaign. A relatively good comparison to the MOPITT data, in spite of the fact that MOPITT a priori assumptions imply several difficulties, is also obtained
- …