605 research outputs found
Excitatory amino acids and intracellular pH in motoneurons of the isolated frog spinal cord
Double-barrelled pH-sensitive micro-electrodes were used to measure changes of intracellular and extracellular pH in and around motoneurons of the isolated frog spinal cord during application of excitatory amino acids. It was found that N-methyl- -aspartate, quisqualate and kainate produced a concentration-dependent intracellular acidification. Extracellularly, triphasic pH changes (acid-alkaline-acid going pH transients) were observed during the action of these amino acids. The possible significance of such pH changes for the physiological and pathophysiological effects of excitatory amino acids are discussed
Glucose availability and sensitivity to anoxia of isolated rat peripheral nerve
The contrast between resistance to ischemia and ischemic lesions in peripheral nerves of diabetic patients was explored by in vitro experiments. Isolated and desheathed rat peroneal nerves were incubated in the following solutions with different glucose availability: 1) 25 mM glucose, 2) 2.5 mM glucose, and 3) 2.5 mM glucose plus 10 mM 2-deoxy-D-glucose. Additionally, the buffering power of all of these solutions was modified. Compound nerve action potential (CNAP), extracellular pH, and extracellular potassium activity (aKe) were measured simultaneously before, during, and after a period of 30 min of anoxia. An increase in glucose availability led to a slower decline in CNAP and to a smaller rise in aKe during anoxia. This resistance to anoxia was accompanied by an enhanced extracellular acidosis. Postanoxic recovery of CNAP was always complete in 25 mM HCO3(-)-buffered solutions. In 5 mM HCO3- and in HCO3(-)-free solutions, however, nerves incubated in 25 mM glucose did not recover functionally after anoxia, whereas nerves bathed in solutions 2 or 3 showed a complete restitution of CNAP. We conclude that high glucose availability and low PO2 in the combination with decreased buffering power and/or inhibition of HCO3(-)-dependent pH regulation mechanisms may damage peripheral mammalian nerves due to a pronounced intracellular acidosis
Persistence of singlet fluctuations in the coupled spin tetrahedra system Cu2Te2O5Br2 revealed by high-field magnetization and 79Br NQR - 125Te NMR
We present high-field magnetization and Br nuclear quadrupole
resonance (NQR) and Te nuclear magnetic resonance (NMR) studies in the
weakly coupled Cu () tetrahedral system CuTeOBr.
The field-induced level crossing effects were observed by the magnetization
measurements in a long-ranged magnetically ordered state which was confirmed by
a strong divergence of the spin-lattice relaxation rate 1/T1 at T0=13.5 K. In
the paramagnetic state, 1/T1 reveals an effective singlet-triplet spin gap much
larger than that observed by static bulk measurements. Our results imply that
the inter- and the intra-tetrahedral interactions compete, but at the same time
they cooperate strengthening effectively the local intratetrahedral exchange
couplings. We discuss that the unusual feature originates from the frustrated
intertetrahedral interactions.Comment: 5 pages, 4 figures, accepted in Phys. Rev. B as a Rapid
Communication
Sticking under wet conditions: the remarkable attachment abilities of the torrent frog, staurois guttatus
Tree frogs climb smooth surfaces utilising capillary forces arising from an air-fluid interface around their toe pads, whereas torrent frogs are able to climb in wet environments near waterfalls where the integrity of the meniscus is at risk. This study compares the adhesive capabilities of a torrent frog to a tree frog, investigating possible adaptations for adhesion under wet conditions. We challenged both frog species to cling to a platform which could be tilted from the horizontal to an upside-down orientation, testing the frogs on different levels of roughness and water flow. On dry, smooth surfaces, both frog species stayed attached to overhanging slopes equally well. In contrast, under both low and high flow rate conditions, the torrent frogs performed significantly better, even adhering under conditions where their toe pads were submerged in water, abolishing the meniscus that underlies capillarity. Using a transparent platform where areas of contact are illuminated, we measured the contact area of frogs during platform rotation under dry conditions. Both frog species not only used the contact area of their pads to adhere, but also large parts of their belly and thigh skin. In the tree frogs, the belly and thighs often detached on steeper slopes, whereas the torrent frogs increased the use of these areas as the slope angle increased. Probing small areas of the different skin parts with a force transducer revealed that forces declined significantly in wet conditions, with only minor differences between the frog species. The superior abilities of the torrent frogs were thus due to the large contact area they used on steep, overhanging surfaces. SEM images revealed slightly elongated cells in the periphery of the toe pads in the torrent frogs, with straightened channels in between them which could facilitate drainage of excess fluid underneath the pad
The Role of the Hypothalamic Paraventricular Nucleus and the Organum Vasculosum Lateral Terminalis in the Control of Sodium Appetite in Male Rats
Angiotensin II (AngII) and aldosterone cooperate centrally to produce a robust sodium appetite. The intracellular signaling and circuitry that underlie this interaction remain unspecified. Male rats pretreated with both deoxycorticosterone (DOC; a synthetic precursor of aldosterone) and central AngII exhibited a marked sodium intake, as classically described. Disruption of inositol trisphosphate signaling, but not extracellular-regulated receptor kinase 1 and 2 signaling, prevented the cooperativity of DOC and AngII on sodium intake. The pattern of expression of the immediate early gene product cFos was used to identify key brain regions that may underlie this behavior. In the paraventricular nuclei (PVN) of the hypothalamus, DOC pretreatment diminished both AngII-induced cFos induction and neurosecretion of oxytocin, a peptide expressed in the PVN. Conversely, in the organum vasculosum lateral terminalis (OVLT), DOC pretreatment augmented cFos expression. Immunohistochemistry identified a substantial presence of oxytocin fibers in the OVLT. In addition, when action potentials in the PVN were inhibited with intraparenchymal lidocaine, AngII-induced sodium ingestion was exaggerated. Intriguingly, this treatment also increased the number of neurons in the OVLT expressing AngII-induced cFos. Collectively, these results suggest that the behavioral cooperativity between DOC and AngII involves the alleviation of an inhibitory oxytocin signal, possibly relayed directly from the PVN to the OVLT
The Role of the Hypothalamic Paraventricular Nucleus and the Organum Vasculosum Lateral Terminalis in the Control of Sodium Appetite in Male Rats
Angiotensin II (AngII) and aldosterone cooperate centrally to produce a robust sodium appetite. The intracellular signaling and circuitry that underlie this interaction remain unspecified. Male rats pretreated with both deoxycorticosterone (DOC; a synthetic precursor of aldosterone) and central AngII exhibited a marked sodium intake, as classically described. Disruption of inositol trisphosphate signaling, but not extracellular-regulated receptor kinase 1 and 2 signaling, prevented the cooperativity of DOC and AngII on sodium intake. The pattern of expression of the immediate early gene product cFos was used to identify key brain regions that may underlie this behavior. In the paraventricular nuclei (PVN) of the hypothalamus, DOC pretreatment diminished both AngII-induced cFos induction and neurosecretion of oxytocin, a peptide expressed in the PVN. Conversely, in the organum vasculosum lateral terminalis (OVLT), DOC pretreatment augmented cFos expression. Immunohistochemistry identified a substantial presence of oxytocin fibers in the OVLT. In addition, when action potentials in the PVN were inhibited with intraparenchymal lidocaine, AngII-induced sodium ingestion was exaggerated. Intriguingly, this treatment also increased the number of neurons in the OVLT expressing AngII-induced cFos. Collectively, these results suggest that the behavioral cooperativity between DOC and AngII involves the alleviation of an inhibitory oxytocin signal, possibly relayed directly from the PVN to the OVLT
Evidence for Unconventional Superconductivity in Arsenic-Free Iron-Based Superconductor FeSe : A ^77Se-NMR Study
We report the results of Se--nuclear magnetic resonance (NMR) in
-FeSe, which exhibits a similar crystal structure to the
LaFeAsOF superconductor and shows superconductivity at 8 K. The
nuclear-spin lattice relaxation rate shows behavior below the
superconducting transition temperature without a coherence peak. The
const. behavior, indicative of the Fermi liquid state, can be seen in a
wide temperature range above . The superconductivity in -FeSe is
also an unconventional one as well as LaFeAsOF and related
materials. The FeAs layer is not essential for the occurrence of the
unconventional superconductivity.Comment: 4pages, 4figures, to be published in J. Phys. Soc. Jpn. 77 No.11
(2008
59-Co and 75-As NMR Investigation of Electron-Doped High Tc Superconductor BaFe(1.8)Co(0.2)As(2) (Tc = 22K)
We report an NMR investigation of the superconductivity in BaFe(2)As(2)
induced by Co doping (Tc=22K). We demonstrate that Co atoms form an alloy with
Fe atoms and donate carriers without creating localized moments. Our finding
strongly suggests that the underlying physics of iron-pnictide superconductors
is quite different from the widely accepted physical picture of high Tc
cuprates as doped Mott insulators. We also show a crossover of electronic
properties into a low temperature pseudo-gap phase with a pseudo-gap Delta
560K, where chi(spin) constant and resisitivty T. The NMR Knight shift below Tc
decreases for both along the c-axis and ab-plane, and is consistent with the
singlet pairing scenario.Comment: Accepted for publication in J. Phys. Soc. Jpn. (4 pages
- …